Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem2 Structured version   Visualization version   GIF version

Theorem sylow2blem2 17957
 Description: Lemma for sylow2b 17959. Left multiplication in a subgroup 𝐻 is a group action on the set of all left cosets of 𝐾. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem2 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem2
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.h . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
2 eqid 2621 . . . . 5 (𝐺s 𝐻) = (𝐺s 𝐻)
32subggrp 17518 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
41, 3syl 17 . . 3 (𝜑 → (𝐺s 𝐻) ∈ Grp)
5 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
6 pwfi 8205 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
75, 6sylib 208 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
8 sylow2b.k . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
9 sylow2b.x . . . . . . 7 𝑋 = (Base‘𝐺)
10 sylow2b.r . . . . . . 7 = (𝐺 ~QG 𝐾)
119, 10eqger 17565 . . . . . 6 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
128, 11syl 17 . . . . 5 (𝜑 Er 𝑋)
1312qsss 7753 . . . 4 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
147, 13ssexd 4765 . . 3 (𝜑 → (𝑋 / ) ∈ V)
154, 14jca 554 . 2 (𝜑 → ((𝐺s 𝐻) ∈ Grp ∧ (𝑋 / ) ∈ V))
16 sylow2b.m . . . . . . 7 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
17 vex 3189 . . . . . . . . 9 𝑦 ∈ V
1817mptex 6440 . . . . . . . 8 (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ V
1918rnex 7047 . . . . . . 7 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ V
2016, 19fnmpt2i 7184 . . . . . 6 · Fn (𝐻 × (𝑋 / ))
2120a1i 11 . . . . 5 (𝜑· Fn (𝐻 × (𝑋 / )))
22 eqid 2621 . . . . . . . 8 (𝑋 / ) = (𝑋 / )
23 oveq2 6612 . . . . . . . . 9 ([𝑠] = 𝑣 → (𝑢 · [𝑠] ) = (𝑢 · 𝑣))
2423eleq1d 2683 . . . . . . . 8 ([𝑠] = 𝑣 → ((𝑢 · [𝑠] ) ∈ (𝑋 / ) ↔ (𝑢 · 𝑣) ∈ (𝑋 / )))
25 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
269, 5, 1, 8, 25, 10, 16sylow2blem1 17956 . . . . . . . . . 10 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 · [𝑠] ) = [(𝑢 + 𝑠)] )
27 ovex 6632 . . . . . . . . . . . 12 (𝐺 ~QG 𝐾) ∈ V
2810, 27eqeltri 2694 . . . . . . . . . . 11 ∈ V
29 subgrcl 17520 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
301, 29syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
31303ad2ant1 1080 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝐺 ∈ Grp)
329subgss 17516 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝜑𝐻𝑋)
3433sselda 3583 . . . . . . . . . . . . 13 ((𝜑𝑢𝐻) → 𝑢𝑋)
35343adant3 1079 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝑢𝑋)
36 simp3 1061 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝑠𝑋)
379, 25grpcl 17351 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑠𝑋) → (𝑢 + 𝑠) ∈ 𝑋)
3831, 35, 36, 37syl3anc 1323 . . . . . . . . . . 11 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 + 𝑠) ∈ 𝑋)
39 ecelqsg 7747 . . . . . . . . . . 11 (( ∈ V ∧ (𝑢 + 𝑠) ∈ 𝑋) → [(𝑢 + 𝑠)] ∈ (𝑋 / ))
4028, 38, 39sylancr 694 . . . . . . . . . 10 ((𝜑𝑢𝐻𝑠𝑋) → [(𝑢 + 𝑠)] ∈ (𝑋 / ))
4126, 40eqeltrd 2698 . . . . . . . . 9 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 · [𝑠] ) ∈ (𝑋 / ))
42413expa 1262 . . . . . . . 8 (((𝜑𝑢𝐻) ∧ 𝑠𝑋) → (𝑢 · [𝑠] ) ∈ (𝑋 / ))
4322, 24, 42ectocld 7759 . . . . . . 7 (((𝜑𝑢𝐻) ∧ 𝑣 ∈ (𝑋 / )) → (𝑢 · 𝑣) ∈ (𝑋 / ))
4443ralrimiva 2960 . . . . . 6 ((𝜑𝑢𝐻) → ∀𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / ))
4544ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑢𝐻𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / ))
46 ffnov 6717 . . . . 5 ( · :(𝐻 × (𝑋 / ))⟶(𝑋 / ) ↔ ( · Fn (𝐻 × (𝑋 / )) ∧ ∀𝑢𝐻𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / )))
4721, 45, 46sylanbrc 697 . . . 4 (𝜑· :(𝐻 × (𝑋 / ))⟶(𝑋 / ))
482subgbas 17519 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
491, 48syl 17 . . . . . 6 (𝜑𝐻 = (Base‘(𝐺s 𝐻)))
5049xpeq1d 5098 . . . . 5 (𝜑 → (𝐻 × (𝑋 / )) = ((Base‘(𝐺s 𝐻)) × (𝑋 / )))
5150feq2d 5988 . . . 4 (𝜑 → ( · :(𝐻 × (𝑋 / ))⟶(𝑋 / ) ↔ · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / )))
5247, 51mpbid 222 . . 3 (𝜑· :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ))
53 oveq2 6612 . . . . . . 7 ([𝑠] = 𝑢 → ((0g‘(𝐺s 𝐻)) · [𝑠] ) = ((0g‘(𝐺s 𝐻)) · 𝑢))
54 id 22 . . . . . . 7 ([𝑠] = 𝑢 → [𝑠] = 𝑢)
5553, 54eqeq12d 2636 . . . . . 6 ([𝑠] = 𝑢 → (((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ↔ ((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢))
56 oveq2 6612 . . . . . . . 8 ([𝑠] = 𝑢 → ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = ((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢))
57 oveq2 6612 . . . . . . . . 9 ([𝑠] = 𝑢 → (𝑏 · [𝑠] ) = (𝑏 · 𝑢))
5857oveq2d 6620 . . . . . . . 8 ([𝑠] = 𝑢 → (𝑎 · (𝑏 · [𝑠] )) = (𝑎 · (𝑏 · 𝑢)))
5956, 58eqeq12d 2636 . . . . . . 7 ([𝑠] = 𝑢 → (((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
60592ralbidv 2983 . . . . . 6 ([𝑠] = 𝑢 → (∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
6155, 60anbi12d 746 . . . . 5 ([𝑠] = 𝑢 → ((((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))) ↔ (((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢)))))
62 simpl 473 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝜑)
631adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑋) → 𝐻 ∈ (SubGrp‘𝐺))
64 eqid 2621 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
6564subg0cl 17523 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
6663, 65syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → (0g𝐺) ∈ 𝐻)
67 simpr 477 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝑠𝑋)
689, 5, 1, 8, 25, 10, 16sylow2blem1 17956 . . . . . . . 8 ((𝜑 ∧ (0g𝐺) ∈ 𝐻𝑠𝑋) → ((0g𝐺) · [𝑠] ) = [((0g𝐺) + 𝑠)] )
6962, 66, 67, 68syl3anc 1323 . . . . . . 7 ((𝜑𝑠𝑋) → ((0g𝐺) · [𝑠] ) = [((0g𝐺) + 𝑠)] )
702, 64subg0 17521 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g‘(𝐺s 𝐻)))
7163, 70syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → (0g𝐺) = (0g‘(𝐺s 𝐻)))
7271oveq1d 6619 . . . . . . 7 ((𝜑𝑠𝑋) → ((0g𝐺) · [𝑠] ) = ((0g‘(𝐺s 𝐻)) · [𝑠] ))
739, 25, 64grplid 17373 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑠𝑋) → ((0g𝐺) + 𝑠) = 𝑠)
7430, 73sylan 488 . . . . . . . 8 ((𝜑𝑠𝑋) → ((0g𝐺) + 𝑠) = 𝑠)
7574eceq1d 7728 . . . . . . 7 ((𝜑𝑠𝑋) → [((0g𝐺) + 𝑠)] = [𝑠] )
7669, 72, 753eqtr3d 2663 . . . . . 6 ((𝜑𝑠𝑋) → ((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] )
7763adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐻 ∈ (SubGrp‘𝐺))
7877, 29syl 17 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐺 ∈ Grp)
7977, 32syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐻𝑋)
80 simprl 793 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑎𝐻)
8179, 80sseldd 3584 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑎𝑋)
82 simprr 795 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑏𝐻)
8379, 82sseldd 3584 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑏𝑋)
8467adantr 481 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑠𝑋)
859, 25grpass 17352 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋𝑠𝑋)) → ((𝑎 + 𝑏) + 𝑠) = (𝑎 + (𝑏 + 𝑠)))
8678, 81, 83, 84, 85syl13anc 1325 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) + 𝑠) = (𝑎 + (𝑏 + 𝑠)))
8786eceq1d 7728 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → [((𝑎 + 𝑏) + 𝑠)] = [(𝑎 + (𝑏 + 𝑠))] )
8862adantr 481 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝜑)
899, 25grpcl 17351 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑠𝑋) → (𝑏 + 𝑠) ∈ 𝑋)
9078, 83, 84, 89syl3anc 1323 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑏 + 𝑠) ∈ 𝑋)
919, 5, 1, 8, 25, 10, 16sylow2blem1 17956 . . . . . . . . . . 11 ((𝜑𝑎𝐻 ∧ (𝑏 + 𝑠) ∈ 𝑋) → (𝑎 · [(𝑏 + 𝑠)] ) = [(𝑎 + (𝑏 + 𝑠))] )
9288, 80, 90, 91syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 · [(𝑏 + 𝑠)] ) = [(𝑎 + (𝑏 + 𝑠))] )
9387, 92eqtr4d 2658 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → [((𝑎 + 𝑏) + 𝑠)] = (𝑎 · [(𝑏 + 𝑠)] ))
9425subgcl 17525 . . . . . . . . . . 11 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑎𝐻𝑏𝐻) → (𝑎 + 𝑏) ∈ 𝐻)
9577, 80, 82, 94syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 + 𝑏) ∈ 𝐻)
969, 5, 1, 8, 25, 10, 16sylow2blem1 17956 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 + 𝑏) ∈ 𝐻𝑠𝑋) → ((𝑎 + 𝑏) · [𝑠] ) = [((𝑎 + 𝑏) + 𝑠)] )
9788, 95, 84, 96syl3anc 1323 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) · [𝑠] ) = [((𝑎 + 𝑏) + 𝑠)] )
989, 5, 1, 8, 25, 10, 16sylow2blem1 17956 . . . . . . . . . . 11 ((𝜑𝑏𝐻𝑠𝑋) → (𝑏 · [𝑠] ) = [(𝑏 + 𝑠)] )
9988, 82, 84, 98syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑏 · [𝑠] ) = [(𝑏 + 𝑠)] )
10099oveq2d 6620 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 · (𝑏 · [𝑠] )) = (𝑎 · [(𝑏 + 𝑠)] ))
10193, 97, 1003eqtr4d 2665 . . . . . . . 8 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
102101ralrimivva 2965 . . . . . . 7 ((𝜑𝑠𝑋) → ∀𝑎𝐻𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
10363, 48syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝐻 = (Base‘(𝐺s 𝐻)))
1042, 25ressplusg 15914 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → + = (+g‘(𝐺s 𝐻)))
1051, 104syl 17 . . . . . . . . . . . 12 (𝜑+ = (+g‘(𝐺s 𝐻)))
106105oveqdr 6628 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → (𝑎 + 𝑏) = (𝑎(+g‘(𝐺s 𝐻))𝑏))
107106oveq1d 6619 . . . . . . . . . 10 ((𝜑𝑠𝑋) → ((𝑎 + 𝑏) · [𝑠] ) = ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ))
108107eqeq1d 2623 . . . . . . . . 9 ((𝜑𝑠𝑋) → (((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
109103, 108raleqbidv 3141 . . . . . . . 8 ((𝜑𝑠𝑋) → (∀𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
110103, 109raleqbidv 3141 . . . . . . 7 ((𝜑𝑠𝑋) → (∀𝑎𝐻𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
111102, 110mpbid 222 . . . . . 6 ((𝜑𝑠𝑋) → ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
11276, 111jca 554 . . . . 5 ((𝜑𝑠𝑋) → (((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
11322, 61, 112ectocld 7759 . . . 4 ((𝜑𝑢 ∈ (𝑋 / )) → (((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
114113ralrimiva 2960 . . 3 (𝜑 → ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
11552, 114jca 554 . 2 (𝜑 → ( · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ) ∧ ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢)))))
116 eqid 2621 . . 3 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
117 eqid 2621 . . 3 (+g‘(𝐺s 𝐻)) = (+g‘(𝐺s 𝐻))
118 eqid 2621 . . 3 (0g‘(𝐺s 𝐻)) = (0g‘(𝐺s 𝐻))
119116, 117, 118isga 17645 . 2 ( · ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )) ↔ (((𝐺s 𝐻) ∈ Grp ∧ (𝑋 / ) ∈ V) ∧ ( · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ) ∧ ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))))
12015, 115, 119sylanbrc 697 1 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  Vcvv 3186   ⊆ wss 3555  𝒫 cpw 4130   ↦ cmpt 4673   × cxp 5072  ran crn 5075   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604   ↦ cmpt2 6606   Er wer 7684  [cec 7685   / cqs 7686  Fincfn 7899  Basecbs 15781   ↾s cress 15782  +gcplusg 15862  0gc0g 16021  Grpcgrp 17343  SubGrpcsubg 17509   ~QG cqg 17511   GrpAct cga 17643 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-eqg 17514  df-ga 17644 This theorem is referenced by:  sylow2blem3  17958
 Copyright terms: Public domain W3C validator