MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifass Structured version   Visualization version   GIF version

Theorem symdifass 4230
Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.)
Assertion
Ref Expression
symdifass ((𝐴𝐵) △ 𝐶) = (𝐴 △ (𝐵𝐶))

Proof of Theorem symdifass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsymdifxor 4228 . . 3 (𝑥 ∈ ((𝐴𝐵) △ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ⊻ 𝑥𝐶))
2 elsymdifxor 4228 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3 biid 263 . . . . 5 (𝑥𝐶𝑥𝐶)
42, 3xorbi12i 1515 . . . 4 ((𝑥 ∈ (𝐴𝐵) ⊻ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ⊻ 𝑥𝐶))
5 xorass 1506 . . . 4 (((𝑥𝐴𝑥𝐵) ⊻ 𝑥𝐶) ↔ (𝑥𝐴 ⊻ (𝑥𝐵𝑥𝐶)))
6 biid 263 . . . . 5 (𝑥𝐴𝑥𝐴)
7 elsymdifxor 4228 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
87bicomi 226 . . . . 5 ((𝑥𝐵𝑥𝐶) ↔ 𝑥 ∈ (𝐵𝐶))
96, 8xorbi12i 1515 . . . 4 ((𝑥𝐴 ⊻ (𝑥𝐵𝑥𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
104, 5, 93bitri 299 . . 3 ((𝑥 ∈ (𝐴𝐵) ⊻ 𝑥𝐶) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
11 elsymdifxor 4228 . . . 4 (𝑥 ∈ (𝐴 △ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
1211bicomi 226 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ 𝑥 ∈ (𝐴 △ (𝐵𝐶)))
131, 10, 123bitri 299 . 2 (𝑥 ∈ ((𝐴𝐵) △ 𝐶) ↔ 𝑥 ∈ (𝐴 △ (𝐵𝐶)))
1413eqriv 2820 1 ((𝐴𝐵) △ 𝐶) = (𝐴 △ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wxo 1501   = wceq 1537  wcel 2114  csymdif 4220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-dif 3941  df-un 3943  df-symdif 4221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator