MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifcom Structured version   Visualization version   GIF version

Theorem symdifcom 3980
Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifcom (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem symdifcom
StepHypRef Expression
1 uncom 3892 . 2 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐴𝐵))
2 df-symdif 3979 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
3 df-symdif 3979 . 2 (𝐵𝐴) = ((𝐵𝐴) ∪ (𝐴𝐵))
41, 2, 33eqtr4i 2784 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1624  cdif 3704  cun 3705  csymdif 3978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-v 3334  df-un 3712  df-symdif 3979
This theorem is referenced by:  symdifeq2  3982
  Copyright terms: Public domain W3C validator