MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg1bas Structured version   Visualization version   GIF version

Theorem symg1bas 18518
Description: The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg1bas.0 𝐴 = {𝐼}
Assertion
Ref Expression
symg1bas (𝐼𝑉𝐵 = {{⟨𝐼, 𝐼⟩}})

Proof of Theorem symg1bas
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symg1bas.1 . . 3 𝐺 = (SymGrp‘𝐴)
2 symg1bas.2 . . 3 𝐵 = (Base‘𝐺)
31, 2symgbas 18498 . 2 𝐵 = {𝑓𝑓:𝐴1-1-onto𝐴}
4 symg1bas.0 . . . . . 6 𝐴 = {𝐼}
5 eqidd 2822 . . . . . . 7 (𝐴 = {𝐼} → 𝑝 = 𝑝)
6 id 22 . . . . . . 7 (𝐴 = {𝐼} → 𝐴 = {𝐼})
75, 6, 6f1oeq123d 6609 . . . . . 6 (𝐴 = {𝐼} → (𝑝:𝐴1-1-onto𝐴𝑝:{𝐼}–1-1-onto→{𝐼}))
84, 7ax-mp 5 . . . . 5 (𝑝:𝐴1-1-onto𝐴𝑝:{𝐼}–1-1-onto→{𝐼})
9 f1of 6614 . . . . . . 7 (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝:{𝐼}⟶{𝐼})
10 fsng 6898 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}))
1110anidms 569 . . . . . . 7 (𝐼𝑉 → (𝑝:{𝐼}⟶{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}))
129, 11syl5ib 246 . . . . . 6 (𝐼𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} → 𝑝 = {⟨𝐼, 𝐼⟩}))
13 f1osng 6654 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼})
1413anidms 569 . . . . . . 7 (𝐼𝑉 → {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼})
15 f1oeq1 6603 . . . . . . 7 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ {⟨𝐼, 𝐼⟩}:{𝐼}–1-1-onto→{𝐼}))
1614, 15syl5ibrcom 249 . . . . . 6 (𝐼𝑉 → (𝑝 = {⟨𝐼, 𝐼⟩} → 𝑝:{𝐼}–1-1-onto→{𝐼}))
1712, 16impbid 214 . . . . 5 (𝐼𝑉 → (𝑝:{𝐼}–1-1-onto→{𝐼} ↔ 𝑝 = {⟨𝐼, 𝐼⟩}))
188, 17syl5bb 285 . . . 4 (𝐼𝑉 → (𝑝:𝐴1-1-onto𝐴𝑝 = {⟨𝐼, 𝐼⟩}))
19 vex 3497 . . . . 5 𝑝 ∈ V
20 f1oeq1 6603 . . . . 5 (𝑓 = 𝑝 → (𝑓:𝐴1-1-onto𝐴𝑝:𝐴1-1-onto𝐴))
2119, 20elab 3666 . . . 4 (𝑝 ∈ {𝑓𝑓:𝐴1-1-onto𝐴} ↔ 𝑝:𝐴1-1-onto𝐴)
22 velsn 4582 . . . 4 (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↔ 𝑝 = {⟨𝐼, 𝐼⟩})
2318, 21, 223bitr4g 316 . . 3 (𝐼𝑉 → (𝑝 ∈ {𝑓𝑓:𝐴1-1-onto𝐴} ↔ 𝑝 ∈ {{⟨𝐼, 𝐼⟩}}))
2423eqrdv 2819 . 2 (𝐼𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} = {{⟨𝐼, 𝐼⟩}})
253, 24syl5eq 2868 1 (𝐼𝑉𝐵 = {{⟨𝐼, 𝐼⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {cab 2799  {csn 4566  cop 4572  wf 6350  1-1-ontowf1o 6353  cfv 6354  Basecbs 16482  SymGrpcsymg 18494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-tset 16583  df-efmnd 18033  df-symg 18495
This theorem is referenced by:  symg2bas  18520  snsymgefmndeq  18522  psgnsn  18647  m1detdiag  21205
  Copyright terms: Public domain W3C validator