MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2hash Structured version   Visualization version   GIF version

Theorem symg2hash 18523
Description: The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2hash ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)

Proof of Theorem symg2hash
StepHypRef Expression
1 symg2bas.0 . . . 4 𝐴 = {𝐼, 𝐽}
2 prfi 8796 . . . 4 {𝐼, 𝐽} ∈ Fin
31, 2eqeltri 2912 . . 3 𝐴 ∈ Fin
4 symg1bas.1 . . . 4 𝐺 = (SymGrp‘𝐴)
5 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
64, 5symghash 18509 . . 3 (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴)))
73, 6ax-mp 5 . 2 (♯‘𝐵) = (!‘(♯‘𝐴))
81fveq2i 6676 . . . . 5 (♯‘𝐴) = (♯‘{𝐼, 𝐽})
9 elex 3515 . . . . . . 7 (𝐼𝑉𝐼 ∈ V)
10 elex 3515 . . . . . . 7 (𝐽𝑊𝐽 ∈ V)
11 id 22 . . . . . . 7 (𝐼𝐽𝐼𝐽)
129, 10, 113anim123i 1147 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽))
13 hashprb 13761 . . . . . 6 ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2)
1412, 13sylib 220 . . . . 5 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘{𝐼, 𝐽}) = 2)
158, 14syl5eq 2871 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐴) = 2)
1615fveq2d 6677 . . 3 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = (!‘2))
17 fac2 13642 . . 3 (!‘2) = 2
1816, 17syl6eq 2875 . 2 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = 2)
197, 18syl5eq 2871 1 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  {cpr 4572  cfv 6358  Fincfn 8512  2c2 11695  !cfa 13636  chash 13693  Basecbs 16486  SymGrpcsymg 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-fac 13637  df-bc 13666  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-tset 16587  df-efmnd 18037  df-symg 18499
This theorem is referenced by:  symg2bas  18524
  Copyright terms: Public domain W3C validator