MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf1lem Structured version   Visualization version   GIF version

Theorem symgextf1lem 17821
Description: Lemma for symgextf1 17822. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf1lem ((𝐾𝑁𝑍𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸𝑋) ≠ (𝐸𝑌)))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf1lem
StepHypRef Expression
1 eqid 2620 . . . . . . 7 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
2 symgext.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
31, 2symgfv 17788 . . . . . 6 ((𝑍𝑆𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑋) ∈ (𝑁 ∖ {𝐾}))
43adantll 749 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑋) ∈ (𝑁 ∖ {𝐾}))
5 eldifsni 4311 . . . . . 6 ((𝑍𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝑍𝑋) ≠ 𝐾)
6 symgext.e . . . . . . . . 9 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
72, 6symgextfv 17819 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) = (𝑍𝑋)))
87imp 445 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) = (𝑍𝑋))
98neeq1d 2850 . . . . . 6 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝐸𝑋) ≠ 𝐾 ↔ (𝑍𝑋) ≠ 𝐾))
105, 9syl5ibr 236 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑋) ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑋) ≠ 𝐾))
114, 10mpd 15 . . . 4 (((𝐾𝑁𝑍𝑆) ∧ 𝑋 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑋) ≠ 𝐾)
1211adantrr 752 . . 3 (((𝐾𝑁𝑍𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸𝑋) ≠ 𝐾)
13 elsni 4185 . . . . . 6 (𝑌 ∈ {𝐾} → 𝑌 = 𝐾)
142, 6symgextfve 17820 . . . . . . 7 (𝐾𝑁 → (𝑌 = 𝐾 → (𝐸𝑌) = 𝐾))
1514adantr 481 . . . . . 6 ((𝐾𝑁𝑍𝑆) → (𝑌 = 𝐾 → (𝐸𝑌) = 𝐾))
1613, 15syl5com 31 . . . . 5 (𝑌 ∈ {𝐾} → ((𝐾𝑁𝑍𝑆) → (𝐸𝑌) = 𝐾))
1716adantl 482 . . . 4 ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑌) = 𝐾))
1817impcom 446 . . 3 (((𝐾𝑁𝑍𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸𝑌) = 𝐾)
1912, 18neeqtrrd 2865 . 2 (((𝐾𝑁𝑍𝑆) ∧ (𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾})) → (𝐸𝑋) ≠ (𝐸𝑌))
2019ex 450 1 ((𝐾𝑁𝑍𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸𝑋) ≠ (𝐸𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791  cdif 3564  ifcif 4077  {csn 4168  cmpt 4720  cfv 5876  Basecbs 15838  SymGrpcsymg 17778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-plusg 15935  df-tset 15941  df-symg 17779
This theorem is referenced by:  symgextf1  17822
  Copyright terms: Public domain W3C validator