MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgmatr01 Structured version   Visualization version   GIF version

Theorem symgmatr01 21265
Description: Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
symgmatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgmatr01.0 0 = (0g𝑅)
symgmatr01.1 1 = (1r𝑅)
Assertion
Ref Expression
symgmatr01 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
Distinct variable groups:   𝑘,𝑞,𝐿   𝑘,𝐾,𝑞   𝑘,𝑀   𝑘,𝑁   𝑃,𝑘,𝑞   𝑄,𝑘,𝑞   𝑖,𝑗,𝑘,𝑞,𝐿   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   1 ,𝑖,𝑗,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝑅(𝑖,𝑗,𝑘,𝑞)   1 (𝑞)   𝑀(𝑞)   𝑁(𝑞)   0 (𝑞)

Proof of Theorem symgmatr01
StepHypRef Expression
1 symgmatr01.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
21symgmatr01lem 21264 . . . 4 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
32imp 409 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 )
4 eqidd 2824 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
5 eqeq1 2827 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 = 𝐾𝑘 = 𝐾))
65adantr 483 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑖 = 𝐾𝑘 = 𝐾))
7 eqeq1 2827 . . . . . . . . . 10 (𝑗 = (𝑄𝑘) → (𝑗 = 𝐿 ↔ (𝑄𝑘) = 𝐿))
87adantl 484 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑗 = 𝐿 ↔ (𝑄𝑘) = 𝐿))
98ifbid 4491 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → if(𝑗 = 𝐿, 1 , 0 ) = if((𝑄𝑘) = 𝐿, 1 , 0 ))
10 oveq12 7167 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑖𝑀𝑗) = (𝑘𝑀(𝑄𝑘)))
116, 9, 10ifbieq12d 4496 . . . . . . 7 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
1211adantl 484 . . . . . 6 (((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) ∧ (𝑖 = 𝑘𝑗 = (𝑄𝑘))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
13 simpr 487 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → 𝑘𝑁)
14 eldifi 4105 . . . . . . . . 9 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → 𝑄𝑃)
15 eqid 2823 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1615, 1symgfv 18510 . . . . . . . . . 10 ((𝑄𝑃𝑘𝑁) → (𝑄𝑘) ∈ 𝑁)
1716ex 415 . . . . . . . . 9 (𝑄𝑃 → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
1814, 17syl 17 . . . . . . . 8 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
1918adantl 484 . . . . . . 7 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
2019imp 409 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑄𝑘) ∈ 𝑁)
21 symgmatr01.1 . . . . . . . . . 10 1 = (1r𝑅)
2221fvexi 6686 . . . . . . . . 9 1 ∈ V
23 symgmatr01.0 . . . . . . . . . 10 0 = (0g𝑅)
2423fvexi 6686 . . . . . . . . 9 0 ∈ V
2522, 24ifex 4517 . . . . . . . 8 if((𝑄𝑘) = 𝐿, 1 , 0 ) ∈ V
26 ovex 7191 . . . . . . . 8 (𝑘𝑀(𝑄𝑘)) ∈ V
2725, 26ifex 4517 . . . . . . 7 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) ∈ V
2827a1i 11 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) ∈ V)
294, 12, 13, 20, 28ovmpod 7304 . . . . 5 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
3029eqeq1d 2825 . . . 4 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → ((𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ↔ if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
3130rexbidva 3298 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ↔ ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
323, 31mpbird 259 . 2 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 )
3332ex 415 1 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  ifcif 4469  cfv 6357  (class class class)co 7158  cmpo 7160  Basecbs 16485  0gc0g 16715  SymGrpcsymg 18497  1rcur 19253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-tset 16586  df-efmnd 18036  df-symg 18498
This theorem is referenced by:  smadiadetlem0  21272
  Copyright terms: Public domain W3C validator