MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtset Structured version   Visualization version   GIF version

Theorem symgtset 18530
Description: The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.)
Hypothesis
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgtset (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺))

Proof of Theorem symgtset
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . 3 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
21efmndtset 18047 . 2 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘(EndoFMnd‘𝐴)))
3 symggrp.1 . . . . 5 𝐺 = (SymGrp‘𝐴)
4 eqid 2824 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
53, 4symgbas 18502 . . . 4 (Base‘𝐺) = {𝑓𝑓:𝐴1-1-onto𝐴}
6 fvexd 6688 . . . 4 (𝐴𝑉 → (Base‘𝐺) ∈ V)
75, 6eqeltrrid 2921 . . 3 (𝐴𝑉 → {𝑓𝑓:𝐴1-1-onto𝐴} ∈ V)
8 eqid 2824 . . . 4 ((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴}) = ((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴})
9 eqid 2824 . . . 4 (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘(EndoFMnd‘𝐴))
108, 9resstset 16668 . . 3 ({𝑓𝑓:𝐴1-1-onto𝐴} ∈ V → (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴})))
117, 10syl 17 . 2 (𝐴𝑉 → (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴})))
12 eqid 2824 . . . . . 6 {𝑓𝑓:𝐴1-1-onto𝐴} = {𝑓𝑓:𝐴1-1-onto𝐴}
133, 12symgval 18500 . . . . 5 𝐺 = ((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴})
1413eqcomi 2833 . . . 4 ((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴}) = 𝐺
1514fveq2i 6676 . . 3 (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴})) = (TopSet‘𝐺)
1615a1i 11 . 2 (𝐴𝑉 → (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓𝑓:𝐴1-1-onto𝐴})) = (TopSet‘𝐺))
172, 11, 163eqtrd 2863 1 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  {cab 2802  Vcvv 3497  𝒫 cpw 4542  {csn 4570   × cxp 5556  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  Basecbs 16486  s cress 16487  TopSetcts 16574  tcpt 16715  EndoFMndcefmnd 18036  SymGrpcsymg 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-tset 16587  df-efmnd 18037  df-symg 18499
This theorem is referenced by:  symgtopn  18537
  Copyright terms: Public domain W3C validator