![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > symrefref2 | Structured version Visualization version GIF version |
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, cf. symrefref3 34633. (Contributed by Peter Mazsa, 19-Jul-2018.) |
Ref | Expression |
---|---|
symrefref2 | ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnss 5509 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 → ran ◡𝑅 ⊆ ran 𝑅) | |
2 | rncnv 34394 | . . . . 5 ⊢ ran ◡𝑅 = dom 𝑅 | |
3 | 2 | sseq1i 3770 | . . . 4 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅) |
4 | 3 | biimpi 206 | . . 3 ⊢ (ran ◡𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅) |
5 | idreseqidinxp 34404 | . . 3 ⊢ (dom 𝑅 ⊆ ran 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ↾ dom 𝑅)) |
7 | 6 | sseq1d 3773 | 1 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∩ cin 3714 ⊆ wss 3715 I cid 5173 × cxp 5264 ◡ccnv 5265 dom cdm 5266 ran crn 5267 ↾ cres 5268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-fun 6051 df-fn 6052 |
This theorem is referenced by: symrefref3 34633 refsymrels2 34634 refsymrel2 34636 |
Copyright terms: Public domain | W3C validator |