MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0top Structured version   Visualization version   GIF version

Theorem t0top 21127
Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t0top (𝐽 ∈ Kol2 → 𝐽 ∈ Top)

Proof of Theorem t0top
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 𝐽 = 𝐽
21ist0 21118 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
32simplbi 476 1 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1989  wral 2911   cuni 4434  Topctop 20692  Kol2ct0 21104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-uni 4435  df-t0 21111
This theorem is referenced by:  restt0  21164  sst0  21171  kqt0  21543  t0hmph  21587  kqhmph  21616  ordtopt0  32425
  Copyright terms: Public domain W3C validator