MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanarg Structured version   Visualization version   GIF version

Theorem tanarg 24114
Description: The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanarg ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))

Proof of Theorem tanarg
StepHypRef Expression
1 fveq2 6088 . . . . . . . 8 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
2 re0 13689 . . . . . . . 8 (ℜ‘0) = 0
31, 2syl6eq 2659 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = 0)
43necon3i 2813 . . . . . 6 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 24064 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 489 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
76imcld 13732 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
87recnd 9925 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9 sqcl 12745 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
109adantr 479 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) ∈ ℂ)
11 abscl 13815 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1211adantr 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
1312recnd 9925 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
1413sqcld 12826 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ∈ ℂ)
15 absrpcl 13825 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
164, 15sylan2 489 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1716rpne0d 11712 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ≠ 0)
18 sqne0 12750 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
1913, 18syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2017, 19mpbird 245 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ≠ 0)
2110, 14, 14, 20divdird 10691 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
22 ax-icn 9852 . . . . . . . . 9 i ∈ ℂ
23 mulcl 9877 . . . . . . . . 9 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2422, 8, 23sylancr 693 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
25 2z 11245 . . . . . . . 8 2 ∈ ℤ
26 efexp 14619 . . . . . . . 8 (((i · (ℑ‘(log‘𝐴))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
2724, 25, 26sylancl 692 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
28 efiarg 24102 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
294, 28sylan2 489 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3029oveq1d 6542 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(i · (ℑ‘(log‘𝐴))))↑2) = ((𝐴 / (abs‘𝐴))↑2))
31 simpl 471 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
3231, 13, 17sqdivd 12841 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴 / (abs‘𝐴))↑2) = ((𝐴↑2) / ((abs‘𝐴)↑2)))
3327, 30, 323eqtrrd 2648 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) / ((abs‘𝐴)↑2)) = (exp‘(2 · (i · (ℑ‘(log‘𝐴))))))
3414, 20dividd 10651 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2)) = 1)
3533, 34oveq12d 6545 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))
3621, 35eqtr2d 2644 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) = (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
3710, 14addcld 9916 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ)
3822a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → i ∈ ℂ)
39 2cn 10941 . . . . . . . . . . 11 2 ∈ ℂ
40 recl 13647 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
4140adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
4241recnd 9925 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
4342sqcld 12826 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) ∈ ℂ)
44 mulcl 9877 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((ℜ‘𝐴)↑2) ∈ ℂ) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4539, 43, 44sylancr 693 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4639a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ∈ ℂ)
47 imcl 13648 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
4847adantr 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 9925 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℂ)
5042, 49mulcld 9917 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (ℑ‘𝐴)) ∈ ℂ)
5138, 46, 50mul12d 10097 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
5238, 42, 49mul12d 10097 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴) · (ℑ‘𝐴))) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
5352oveq2d 6543 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
5451, 53eqtrd 2643 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
55 mulcl 9877 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
5622, 49, 55sylancr 693 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘𝐴)) ∈ ℂ)
5742, 56mulcld 9917 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ)
58 mulcl 9877 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
5939, 57, 58sylancr 693 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
6054, 59eqeltrd 2687 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) ∈ ℂ)
6138, 45, 60adddid 9921 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
62 mulcl 9877 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) ∈ ℂ)
6342, 22, 62sylancl 692 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ∈ ℂ)
6446, 63, 42mulassd 9920 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
6542sqvald 12825 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
6665oveq1d 6542 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (((ℜ‘𝐴) · (ℜ‘𝐴)) · i))
67 mulcom 9879 . . . . . . . . . . . . . 14 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ i ∈ ℂ) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6843, 22, 67sylancl 692 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6942, 42, 38mul32d 10098 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · (ℜ‘𝐴)) · i) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7066, 68, 693eqtr3d 2651 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7170oveq2d 6543 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
7246, 38, 43mul12d 10097 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (i · (2 · ((ℜ‘𝐴)↑2))))
7364, 71, 723eqtr2d 2649 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (i · (2 · ((ℜ‘𝐴)↑2))))
74 ixi 10508 . . . . . . . . . . . . 13 (i · i) = -1
7574oveq1i 6537 . . . . . . . . . . . 12 ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
76 mulcl 9877 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7739, 49, 76sylancr 693 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7877, 42mulcld 9917 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) ∈ ℂ)
7938, 38, 78mulassd 9920 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8075, 79syl5eqr 2657 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8178mulm1d 10334 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
8246, 49, 42mulassd 9920 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))))
8349, 42mulcomd 9918 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴) · (ℜ‘𝐴)) = ((ℜ‘𝐴) · (ℑ‘𝐴)))
8483oveq2d 6543 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8582, 84eqtrd 2643 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8685oveq2d 6543 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
8786oveq2d 6543 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8880, 81, 873eqtr3d 2651 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8973, 88oveq12d 6545 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
90 mulcl 9877 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · i) ∈ ℂ) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9139, 63, 90sylancr 693 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9291, 42mulcld 9917 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) ∈ ℂ)
9392, 78negsubd 10250 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9461, 89, 933eqtr2d 2649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9549sqcld 12826 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) ∈ ℂ)
9659, 95subcld 10244 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) ∈ ℂ)
9743, 96, 43, 95add4d 10116 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
98 replim 13653 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
9998adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
10099oveq1d 6542 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2))
101 binom2 12799 . . . . . . . . . . . . . 14 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
10242, 56, 101syl2anc 690 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
103 sqmul 12746 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
10422, 49, 103sylancr 693 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
105 i2 12785 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
106105oveq1i 6537 . . . . . . . . . . . . . . . 16 ((i↑2) · ((ℑ‘𝐴)↑2)) = (-1 · ((ℑ‘𝐴)↑2))
107104, 106syl6eq 2659 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = (-1 · ((ℑ‘𝐴)↑2)))
10895mulm1d 10334 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((ℑ‘𝐴)↑2)) = -((ℑ‘𝐴)↑2))
109107, 108eqtrd 2643 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = -((ℑ‘𝐴)↑2))
110109oveq2d 6543 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)))
11143, 59addcld 9916 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) ∈ ℂ)
112111, 95negsubd 10250 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
113102, 110, 1123eqtrd 2647 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
11443, 59, 95addsubassd 10264 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
115100, 113, 1143eqtrd 2647 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
116 absvalsq2 13818 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
117116adantr 479 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
118115, 117oveq12d 6545 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
119432timesd 11125 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)))
12059, 95npcand 10248 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
12153, 51, 1203eqtr4d 2653 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)))
122119, 121oveq12d 6545 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
12397, 118, 1223eqtr4d 2653 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
124123oveq2d 6543 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
12591, 77, 42subdird 10339 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
12694, 124, 1253eqtr4d 2653 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)))
12791, 77subcld 10244 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ∈ ℂ)
128 mulcom 9879 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
12942, 22, 128sylancl 692 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
130 simpr 475 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
131 eleq1 2675 . . . . . . . . . . . . . 14 ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → ((i · (ℜ‘𝐴)) ∈ ℝ ↔ (ℑ‘𝐴) ∈ ℝ))
13248, 131syl5ibrcom 235 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (i · (ℜ‘𝐴)) ∈ ℝ))
133 rimul 10861 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℝ ∧ (i · (ℜ‘𝐴)) ∈ ℝ) → (ℜ‘𝐴) = 0)
13441, 132, 133syl6an 565 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (ℜ‘𝐴) = 0))
135134necon3d 2802 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≠ 0 → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴)))
136130, 135mpd 15 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴))
137129, 136eqnetrd 2848 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴))
13891, 77subeq0ad 10254 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ (2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴))))
139 2ne0 10963 . . . . . . . . . . . . 13 2 ≠ 0
140139a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ≠ 0)
14163, 49, 46, 140mulcand 10512 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴)) ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
142138, 141bitrd 266 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
143142necon3bid 2825 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0 ↔ ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴)))
144137, 143mpbird 245 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0)
145127, 42, 144, 130mulne0d 10531 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) ≠ 0)
146126, 145eqnetrd 2848 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0)
147 oveq2 6535 . . . . . . . 8 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · 0))
148 it0e0 11104 . . . . . . . 8 (i · 0) = 0
149147, 148syl6eq 2659 . . . . . . 7 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = 0)
150149necon3i 2813 . . . . . 6 ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0 → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
151146, 150syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
15237, 14, 151, 20divne0d 10669 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) ≠ 0)
15336, 152eqnetrd 2848 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0)
154 tanval3 14652 . . 3 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
1558, 153, 154syl2anc 690 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
15610, 14, 14, 20divsubdird 10692 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
15733, 34oveq12d 6545 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1))
158156, 157eqtr2d 2644 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
15936oveq2d 6543 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
16038, 37, 14, 20divassd 10688 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
161159, 160eqtr4d 2646 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)))
162158, 161oveq12d 6545 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))) = ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))))
16310, 14subcld 10244 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) ∈ ℂ)
164 mulcl 9877 . . . . 5 ((i ∈ ℂ ∧ ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
16522, 37, 164sylancr 693 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
166163, 165, 14, 146, 20divcan7d 10681 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))))
167115, 117oveq12d 6545 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
16843, 96, 95pnpcand 10281 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)))
16959, 95, 95subsub4d 10275 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
170952timesd 11125 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
171170oveq2d 6543 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
17246, 63, 49mulassd 9920 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))))
17342, 38, 49mulassd 9920 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · i) · (ℑ‘𝐴)) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
174173oveq2d 6543 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
175172, 174eqtr2d 2644 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) = ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)))
17649sqvald 12825 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
177176oveq2d 6543 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
17846, 49, 49mulassd 9920 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
179177, 178eqtr4d 2646 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)))
180175, 179oveq12d 6545 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
18191, 77, 49subdird 10339 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
182180, 181eqtr4d 2646 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
183169, 171, 1823eqtr2d 2649 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
184167, 168, 1833eqtrd 2647 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
185184, 126oveq12d 6545 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))) = ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))))
18649, 42, 127, 130, 144divcan5d 10679 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
187166, 185, 1863eqtrd 2647 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
188155, 162, 1873eqtrd 2647 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  cfv 5790  (class class class)co 6527  cc 9791  cr 9792  0cc0 9793  1c1 9794  ici 9795   + caddc 9796   · cmul 9798  cmin 10118  -cneg 10119   / cdiv 10536  2c2 10920  cz 11213  +crp 11667  cexp 12680  cre 13634  cim 13635  abscabs 13771  expce 14580  tanctan 14584  logclog 24050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-tan 14590  df-pi 14591  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-log 24052
This theorem is referenced by:  logcnlem4  24136  atanlogsublem  24387
  Copyright terms: Public domain W3C validator