MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanatan Structured version   Visualization version   GIF version

Theorem tanatan 24360
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
tanatan (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)

Proof of Theorem tanatan
StepHypRef Expression
1 atancl 24322 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 2efiatan 24359 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
32oveq1d 6539 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((((2 · i) / (𝐴 + i)) − 1) + 1))
4 2mulicn 11099 . . . . . . . 8 (2 · i) ∈ ℂ
54a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6 atandm 24317 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
76simp1bi 1068 . . . . . . . 8 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
8 ax-icn 9848 . . . . . . . 8 i ∈ ℂ
9 addcl 9871 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
107, 8, 9sylancl 692 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
11 subneg 10178 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
127, 8, 11sylancl 692 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
136simp2bi 1069 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
148negcli 10197 . . . . . . . . . 10 -i ∈ ℂ
15 subeq0 10155 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
1615necon3bid 2822 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
177, 14, 16sylancl 692 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
1813, 17mpbird 245 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
1912, 18eqnetrrd 2846 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
205, 10, 19divcld 10647 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ∈ ℂ)
21 ax-1cn 9847 . . . . . 6 1 ∈ ℂ
22 npcan 10138 . . . . . 6 ((((2 · i) / (𝐴 + i)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
2320, 21, 22sylancl 692 . . . . 5 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
243, 23eqtrd 2640 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((2 · i) / (𝐴 + i)))
25 2muline0 11100 . . . . . 6 (2 · i) ≠ 0
2625a1i 11 . . . . 5 (𝐴 ∈ dom arctan → (2 · i) ≠ 0)
275, 10, 26, 19divne0d 10663 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ≠ 0)
2824, 27eqnetrd 2845 . . 3 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0)
29 tanval3 14646 . . 3 (((arctan‘𝐴) ∈ ℂ ∧ ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0) → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
301, 28, 29syl2anc 690 . 2 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
312oveq1d 6539 . . . . . 6 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((((2 · i) / (𝐴 + i)) − 1) − 1))
3221a1i 11 . . . . . . . 8 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
3320, 32, 32subsub4d 10271 . . . . . . 7 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − (1 + 1)))
34 df-2 10923 . . . . . . . 8 2 = (1 + 1)
3534oveq2i 6535 . . . . . . 7 (((2 · i) / (𝐴 + i)) − 2) = (((2 · i) / (𝐴 + i)) − (1 + 1))
3633, 35syl6eqr 2658 . . . . . 6 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − 2))
3731, 36eqtrd 2640 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = (((2 · i) / (𝐴 + i)) − 2))
38 2cn 10935 . . . . . . . 8 2 ∈ ℂ
39 mulcl 9873 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (2 · (𝐴 + i)) ∈ ℂ)
4038, 10, 39sylancr 693 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · (𝐴 + i)) ∈ ℂ)
415, 40, 10, 19divsubdird 10686 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))))
42 mulneg12 10316 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) = (2 · -𝐴))
4338, 7, 42sylancr 693 . . . . . . . 8 (𝐴 ∈ dom arctan → (-2 · 𝐴) = (2 · -𝐴))
44 negsub 10177 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
458, 7, 44sylancr 693 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
4645oveq1d 6539 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = ((i − 𝐴) − i))
477negcld 10227 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -𝐴 ∈ ℂ)
48 pncan2 10136 . . . . . . . . . . 11 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((i + -𝐴) − i) = -𝐴)
498, 47, 48sylancr 693 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = -𝐴)
508a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → i ∈ ℂ)
5150, 7, 50subsub4d 10271 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i − 𝐴) − i) = (i − (𝐴 + i)))
5246, 49, 513eqtr3rd 2649 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i − (𝐴 + i)) = -𝐴)
5352oveq2d 6540 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = (2 · -𝐴))
5438a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5554, 50, 10subdid 10333 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = ((2 · i) − (2 · (𝐴 + i))))
5643, 53, 553eqtr2rd 2647 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · i) − (2 · (𝐴 + i))) = (-2 · 𝐴))
5756oveq1d 6539 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = ((-2 · 𝐴) / (𝐴 + i)))
5854, 10, 19divcan4d 10653 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · (𝐴 + i)) / (𝐴 + i)) = 2)
5958oveq2d 6540 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 2))
6041, 57, 593eqtr3d 2648 . . . . 5 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − 2))
6137, 60eqtr4d 2643 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((-2 · 𝐴) / (𝐴 + i)))
6224oveq2d 6540 . . . . 5 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (i · ((2 · i) / (𝐴 + i))))
638, 38, 8mul12i 10079 . . . . . . . 8 (i · (2 · i)) = (2 · (i · i))
64 ixi 10502 . . . . . . . . 9 (i · i) = -1
6564oveq2i 6535 . . . . . . . 8 (2 · (i · i)) = (2 · -1)
6621negcli 10197 . . . . . . . . 9 -1 ∈ ℂ
6738mulm1i 10322 . . . . . . . . 9 (-1 · 2) = -2
6866, 38, 67mulcomli 9900 . . . . . . . 8 (2 · -1) = -2
6963, 65, 683eqtri 2632 . . . . . . 7 (i · (2 · i)) = -2
7069oveq1i 6534 . . . . . 6 ((i · (2 · i)) / (𝐴 + i)) = (-2 / (𝐴 + i))
7150, 5, 10, 19divassd 10682 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (2 · i)) / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7270, 71syl5eqr 2654 . . . . 5 (𝐴 ∈ dom arctan → (-2 / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7362, 72eqtr4d 2643 . . . 4 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (-2 / (𝐴 + i)))
7461, 73oveq12d 6542 . . 3 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))))
7538negcli 10197 . . . . . 6 -2 ∈ ℂ
76 mulcl 9873 . . . . . 6 ((-2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) ∈ ℂ)
7775, 7, 76sylancr 693 . . . . 5 (𝐴 ∈ dom arctan → (-2 · 𝐴) ∈ ℂ)
7875a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ∈ ℂ)
79 2ne0 10957 . . . . . . 7 2 ≠ 0
8038, 79negne0i 10204 . . . . . 6 -2 ≠ 0
8180a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ≠ 0)
8277, 78, 10, 81, 19divcan7d 10675 . . . 4 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = ((-2 · 𝐴) / -2))
837, 78, 81divcan3d 10652 . . . 4 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / -2) = 𝐴)
8482, 83eqtrd 2640 . . 3 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = 𝐴)
8574, 84eqtrd 2640 . 2 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = 𝐴)
8630, 85eqtrd 2640 1 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2776  dom cdm 5025  cfv 5787  (class class class)co 6524  cc 9787  0cc0 9789  1c1 9790  ici 9791   + caddc 9792   · cmul 9794  cmin 10114  -cneg 10115   / cdiv 10530  2c2 10914  expce 14574  tanctan 14578  arctancatan 24305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-pm 7721  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-ioo 12003  df-ioc 12004  df-ico 12005  df-icc 12006  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-fac 12875  df-bc 12904  df-hash 12932  df-shft 13598  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-limsup 13993  df-clim 14010  df-rlim 14011  df-sum 14208  df-ef 14580  df-sin 14582  df-cos 14583  df-tan 14584  df-pi 14585  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-pt 15871  df-prds 15874  df-xrs 15928  df-qtop 15933  df-imas 15934  df-xps 15936  df-mre 16012  df-mrc 16013  df-acs 16015  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-submnd 17102  df-mulg 17307  df-cntz 17516  df-cmn 17961  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cn 20780  df-cnp 20781  df-haus 20868  df-tx 21114  df-hmeo 21307  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-xms 21873  df-ms 21874  df-tms 21875  df-cncf 22417  df-limc 23350  df-dv 23351  df-log 24021  df-atan 24308
This theorem is referenced by:  atantanb  24365  atanord  24368
  Copyright terms: Public domain W3C validator