Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tayl0 Structured version   Visualization version   GIF version

Theorem tayl0 24335
 Description: The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
tayl0 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem tayl0
StepHypRef Expression
1 taylfval.a . . . . 5 (𝜑𝐴𝑆)
2 taylfval.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
3 recnprss 23887 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
42, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
51, 4sstrd 3754 . . . 4 (𝜑𝐴 ⊆ ℂ)
6 fveq2 6353 . . . . . . . 8 (𝑘 = 0 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘0))
76dmeqd 5481 . . . . . . 7 (𝑘 = 0 → dom ((𝑆 D𝑛 𝐹)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘0))
87eleq2d 2825 . . . . . 6 (𝑘 = 0 → (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0)))
9 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
109ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
11 taylfval.n . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
12 elxnn0 11577 . . . . . . . . 9 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
13 0xr 10298 . . . . . . . . . . 11 0 ∈ ℝ*
1413a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ∈ ℝ*)
15 xnn0xr 11580 . . . . . . . . . 10 (𝑁 ∈ ℕ0*𝑁 ∈ ℝ*)
16 xnn0ge0 12180 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ≤ 𝑁)
17 lbicc2 12501 . . . . . . . . . 10 ((0 ∈ ℝ*𝑁 ∈ ℝ* ∧ 0 ≤ 𝑁) → 0 ∈ (0[,]𝑁))
1814, 15, 16, 17syl3anc 1477 . . . . . . . . 9 (𝑁 ∈ ℕ0* → 0 ∈ (0[,]𝑁))
1912, 18sylbir 225 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 = +∞) → 0 ∈ (0[,]𝑁))
2011, 19syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0[,]𝑁))
21 0zd 11601 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
2220, 21elind 3941 . . . . . 6 (𝜑 → 0 ∈ ((0[,]𝑁) ∩ ℤ))
238, 10, 22rspcdva 3455 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0))
24 cnex 10229 . . . . . . . . . 10 ℂ ∈ V
2524a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
26 taylfval.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
27 elpm2r 8043 . . . . . . . . 9 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2825, 2, 26, 1, 27syl22anc 1478 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
29 dvn0 23906 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
304, 28, 29syl2anc 696 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
3130dmeqd 5481 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = dom 𝐹)
32 fdm 6212 . . . . . . 7 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
3326, 32syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3431, 33eqtrd 2794 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = 𝐴)
3523, 34eleqtrd 2841 . . . 4 (𝜑𝐵𝐴)
365, 35sseldd 3745 . . 3 (𝜑𝐵 ∈ ℂ)
37 cnfldbas 19972 . . . . . . 7 ℂ = (Base‘ℂfld)
38 cnfld0 19992 . . . . . . 7 0 = (0g‘ℂfld)
39 cnring 19990 . . . . . . . 8 fld ∈ Ring
40 ringmnd 18776 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4139, 40mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ Mnd)
42 ovex 6842 . . . . . . . . 9 (0[,]𝑁) ∈ V
4342inex1 4951 . . . . . . . 8 ((0[,]𝑁) ∩ ℤ) ∈ V
4443a1i 11 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
452adantr 472 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ})
4628adantr 472 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
47 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
4847elin2d 3946 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ)
4947elin1d 3945 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁))
50 nn0re 11513 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5150rexrd 10301 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
52 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = +∞ → 𝑁 = +∞)
53 pnfxr 10304 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
5452, 53syl6eqel 2847 . . . . . . . . . . . . . . . . . . 19 (𝑁 = +∞ → 𝑁 ∈ ℝ*)
5551, 54jaoi 393 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑁 = +∞) → 𝑁 ∈ ℝ*)
5611, 55syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ*)
5756adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*)
58 elicc1 12432 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5913, 57, 58sylancr 698 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
6049, 59mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁))
6160simp2d 1138 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘)
62 elnn0z 11602 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
6348, 61, 62sylanbrc 701 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0)
64 dvnf 23909 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6545, 46, 63, 64syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6665, 9ffvelrnd 6524 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
6763faccld 13285 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ)
6867nncnd 11248 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ)
6967nnne0d 11277 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0)
7066, 68, 69divcld 11013 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
71 0cnd 10245 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ∈ ℂ)
7271, 63expcld 13222 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (0↑𝑘) ∈ ℂ)
7370, 72mulcld 10272 . . . . . . . 8 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) ∈ ℂ)
74 eqid 2760 . . . . . . . 8 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
7573, 74fmptd 6549 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
76 eldifi 3875 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
7776, 63sylan2 492 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ0)
78 eldifsni 4466 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ≠ 0)
7978adantl 473 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ≠ 0)
80 elnnne0 11518 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
8177, 79, 80sylanbrc 701 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ)
82810expd 13238 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (0↑𝑘) = 0)
8382oveq2d 6830 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
8470mul01d 10447 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8576, 84sylan2 492 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8683, 85eqtrd 2794 . . . . . . . 8 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = 0)
87 zex 11598 . . . . . . . . . 10 ℤ ∈ V
8887inex2 4952 . . . . . . . . 9 ((0[,]𝑁) ∩ ℤ) ∈ V
8988a1i 11 . . . . . . . 8 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
9086, 89suppss2 7499 . . . . . . 7 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})
9137, 38, 41, 44, 22, 75, 90gsumpt 18581 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0))
926fveq1d 6355 . . . . . . . . . 10 (𝑘 = 0 → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 𝐹)‘0)‘𝐵))
93 fveq2 6353 . . . . . . . . . . 11 (𝑘 = 0 → (!‘𝑘) = (!‘0))
94 fac0 13277 . . . . . . . . . . 11 (!‘0) = 1
9593, 94syl6eq 2810 . . . . . . . . . 10 (𝑘 = 0 → (!‘𝑘) = 1)
9692, 95oveq12d 6832 . . . . . . . . 9 (𝑘 = 0 → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1))
97 oveq2 6822 . . . . . . . . . 10 (𝑘 = 0 → (0↑𝑘) = (0↑0))
98 0exp0e1 13079 . . . . . . . . . 10 (0↑0) = 1
9997, 98syl6eq 2810 . . . . . . . . 9 (𝑘 = 0 → (0↑𝑘) = 1)
10096, 99oveq12d 6832 . . . . . . . 8 (𝑘 = 0 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
101 ovex 6842 . . . . . . . 8 (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) ∈ V
102100, 74, 101fvmpt 6445 . . . . . . 7 (0 ∈ ((0[,]𝑁) ∩ ℤ) → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10322, 102syl 17 . . . . . 6 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10430fveq1d 6355 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 𝐹)‘0)‘𝐵) = (𝐹𝐵))
105104oveq1d 6829 . . . . . . . . 9 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = ((𝐹𝐵) / 1))
10626, 35ffvelrnd 6524 . . . . . . . . . 10 (𝜑 → (𝐹𝐵) ∈ ℂ)
107106div1d 11005 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) / 1) = (𝐹𝐵))
108105, 107eqtrd 2794 . . . . . . . 8 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = (𝐹𝐵))
109108oveq1d 6829 . . . . . . 7 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = ((𝐹𝐵) · 1))
110106mulid1d 10269 . . . . . . 7 (𝜑 → ((𝐹𝐵) · 1) = (𝐹𝐵))
111109, 110eqtrd 2794 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = (𝐹𝐵))
11291, 103, 1113eqtrd 2798 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = (𝐹𝐵))
113 ringcmn 18801 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
11439, 113mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
115 cnfldtps 22802 . . . . . . 7 fld ∈ TopSp
116115a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ TopSp)
117 mptexg 6649 . . . . . . . 8 (((0[,]𝑁) ∩ ℤ) ∈ V → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
11888, 117mp1i 13 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
119 funmpt 6087 . . . . . . . 8 Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
120119a1i 11 . . . . . . 7 (𝜑 → Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
121 c0ex 10246 . . . . . . . 8 0 ∈ V
122121a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
123 snfi 8205 . . . . . . . 8 {0} ∈ Fin
124123a1i 11 . . . . . . 7 (𝜑 → {0} ∈ Fin)
125 suppssfifsupp 8457 . . . . . . 7 ((((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∧ 0 ∈ V) ∧ ({0} ∈ Fin ∧ ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
126118, 120, 122, 124, 90, 125syl32anc 1485 . . . . . 6 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
12737, 38, 114, 116, 44, 75, 126tsmsid 22164 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
128112, 127eqeltrrd 2840 . . . 4 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
12936subidd 10592 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
130129oveq1d 6829 . . . . . . 7 (𝜑 → ((𝐵𝐵)↑𝑘) = (0↑𝑘))
131130oveq2d 6830 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
132131mpteq2dv 4897 . . . . 5 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
133132oveq2d 6830 . . . 4 (𝜑 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
134128, 133eleqtrrd 2842 . . 3 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))
135 taylfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
1362, 26, 1, 11, 9, 135eltayl 24333 . . 3 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ ℂ ∧ (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))))
13736, 134, 136mpbir2and 995 . 2 (𝜑𝐵𝑇(𝐹𝐵))
1382, 26, 1, 11, 9, 135taylf 24334 . . 3 (𝜑𝑇:dom 𝑇⟶ℂ)
139 ffun 6209 . . 3 (𝑇:dom 𝑇⟶ℂ → Fun 𝑇)
140 funbrfv2b 6403 . . 3 (Fun 𝑇 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
141138, 139, 1403syl 18 . 2 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
142137, 141mpbid 222 1 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  Vcvv 3340   ∖ cdif 3712   ∩ cin 3714   ⊆ wss 3715  {csn 4321  {cpr 4323   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  Fun wfun 6043  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   supp csupp 7464   ↑pm cpm 8026  Fincfn 8123   finSupp cfsupp 8442  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   · cmul 10153  +∞cpnf 10283  ℝ*cxr 10285   ≤ cle 10287   − cmin 10478   / cdiv 10896  ℕcn 11232  ℕ0cn0 11504  ℕ0*cxnn0 11575  ℤcz 11589  [,]cicc 12391  ↑cexp 13074  !cfa 13274   Σg cgsu 16323  Mndcmnd 17515  CMndccmn 18413  Ringcrg 18767  ℂfldccnfld 19968  TopSpctps 20958   tsums ctsu 22150   D𝑛 cdvn 23847   Tayl ctayl 24326 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-fac 13275  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cnp 21254  df-haus 21341  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-tsms 22151  df-xms 22346  df-ms 22347  df-limc 23849  df-dv 23850  df-dvn 23851  df-tayl 24328 This theorem is referenced by:  dvntaylp0  24345
 Copyright terms: Public domain W3C validator