MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylf Structured version   Visualization version   GIF version

Theorem taylf 24951
Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylf (𝜑𝑇:dom 𝑇⟶ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylfval.f . . . . . . 7 (𝜑𝐹:𝐴⟶ℂ)
3 taylfval.a . . . . . . 7 (𝜑𝐴𝑆)
4 taylfval.n . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
5 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
6 taylfval.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylfval 24949 . . . . . 6 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
8 simpr 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
98snssd 4744 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → {𝑥} ⊆ ℂ)
101, 2, 3, 4, 5taylfvallem 24948 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
11 xpss12 5572 . . . . . . . . 9 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
129, 10, 11syl2anc 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1312ralrimiva 3184 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
14 iunss 4971 . . . . . . 7 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1513, 14sylibr 236 . . . . . 6 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
167, 15eqsstrd 4007 . . . . 5 (𝜑𝑇 ⊆ (ℂ × ℂ))
17 relxp 5575 . . . . 5 Rel (ℂ × ℂ)
18 relss 5658 . . . . 5 (𝑇 ⊆ (ℂ × ℂ) → (Rel (ℂ × ℂ) → Rel 𝑇))
1916, 17, 18mpisyl 21 . . . 4 (𝜑 → Rel 𝑇)
201, 2, 3, 4, 5, 6eltayl 24950 . . . . . . . 8 (𝜑 → (𝑥𝑇𝑦 ↔ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2120biimpd 231 . . . . . . 7 (𝜑 → (𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2221alrimiv 1928 . . . . . 6 (𝜑 → ∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
23 cnfldbas 20551 . . . . . . . . 9 ℂ = (Base‘ℂfld)
24 cnring 20569 . . . . . . . . . 10 fld ∈ Ring
25 ringcmn 19333 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
2624, 25mp1i 13 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ CMnd)
27 cnfldtps 23388 . . . . . . . . . 10 fld ∈ TopSp
2827a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ TopSp)
29 ovex 7191 . . . . . . . . . . 11 (0[,]𝑁) ∈ V
3029inex1 5223 . . . . . . . . . 10 ((0[,]𝑁) ∩ ℤ) ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
321, 2, 3, 4, 5taylfvallem1 24947 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
3332fmpttd 6881 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
34 eqid 2823 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534cnfldhaus 23395 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Haus
3635a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus)
3723, 26, 28, 31, 33, 34, 36haustsms 22746 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
3837ex 415 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
39 moanimv 2704 . . . . . . 7 (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ↔ (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
4038, 39sylibr 236 . . . . . 6 (𝜑 → ∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
41 moim 2626 . . . . . 6 (∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))) → (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) → ∃*𝑦 𝑥𝑇𝑦))
4222, 40, 41sylc 65 . . . . 5 (𝜑 → ∃*𝑦 𝑥𝑇𝑦)
4342alrimiv 1928 . . . 4 (𝜑 → ∀𝑥∃*𝑦 𝑥𝑇𝑦)
44 dffun6 6372 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑥∃*𝑦 𝑥𝑇𝑦))
4519, 43, 44sylanbrc 585 . . 3 (𝜑 → Fun 𝑇)
4645funfnd 6388 . 2 (𝜑𝑇 Fn dom 𝑇)
47 rnss 5811 . . . 4 (𝑇 ⊆ (ℂ × ℂ) → ran 𝑇 ⊆ ran (ℂ × ℂ))
4816, 47syl 17 . . 3 (𝜑 → ran 𝑇 ⊆ ran (ℂ × ℂ))
49 rnxpss 6031 . . 3 ran (ℂ × ℂ) ⊆ ℂ
5048, 49sstrdi 3981 . 2 (𝜑 → ran 𝑇 ⊆ ℂ)
51 df-f 6361 . 2 (𝑇:dom 𝑇⟶ℂ ↔ (𝑇 Fn dom 𝑇 ∧ ran 𝑇 ⊆ ℂ))
5246, 50, 51sylanbrc 585 1 (𝜑𝑇:dom 𝑇⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  wral 3140  Vcvv 3496  cin 3937  wss 3938  {csn 4569  {cpr 4571   ciun 4921   class class class wbr 5068  cmpt 5148   × cxp 5555  dom cdm 5557  ran crn 5558  Rel wrel 5562  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   · cmul 10544  +∞cpnf 10674  cmin 10872   / cdiv 11299  0cn0 11900  cz 11984  [,]cicc 12744  cexp 13432  !cfa 13636  TopOpenctopn 16697  CMndccmn 18908  Ringcrg 19299  fldccnfld 20547  TopSpctps 21542  Hauscha 21918   tsums ctsu 22736   D𝑛 cdvn 24464   Tayl ctayl 24943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cnp 21838  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tsms 22737  df-xms 22932  df-ms 22933  df-limc 24466  df-dv 24467  df-dvn 24468  df-tayl 24945
This theorem is referenced by:  tayl0  24952
  Copyright terms: Public domain W3C validator