MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylf Structured version   Visualization version   GIF version

Theorem taylf 24160
Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylf (𝜑𝑇:dom 𝑇⟶ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylfval.f . . . . . . 7 (𝜑𝐹:𝐴⟶ℂ)
3 taylfval.a . . . . . . 7 (𝜑𝐴𝑆)
4 taylfval.n . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
5 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
6 taylfval.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylfval 24158 . . . . . 6 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
8 simpr 476 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
98snssd 4372 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → {𝑥} ⊆ ℂ)
101, 2, 3, 4, 5taylfvallem 24157 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
11 xpss12 5158 . . . . . . . . 9 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
129, 10, 11syl2anc 694 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1312ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
14 iunss 4593 . . . . . . 7 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1513, 14sylibr 224 . . . . . 6 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
167, 15eqsstrd 3672 . . . . 5 (𝜑𝑇 ⊆ (ℂ × ℂ))
17 relxp 5160 . . . . 5 Rel (ℂ × ℂ)
18 relss 5240 . . . . 5 (𝑇 ⊆ (ℂ × ℂ) → (Rel (ℂ × ℂ) → Rel 𝑇))
1916, 17, 18mpisyl 21 . . . 4 (𝜑 → Rel 𝑇)
201, 2, 3, 4, 5, 6eltayl 24159 . . . . . . . 8 (𝜑 → (𝑥𝑇𝑦 ↔ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2120biimpd 219 . . . . . . 7 (𝜑 → (𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2221alrimiv 1895 . . . . . 6 (𝜑 → ∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
23 cnfldbas 19798 . . . . . . . . 9 ℂ = (Base‘ℂfld)
24 cnring 19816 . . . . . . . . . 10 fld ∈ Ring
25 ringcmn 18627 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
2624, 25mp1i 13 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ CMnd)
27 cnfldtps 22628 . . . . . . . . . 10 fld ∈ TopSp
2827a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ TopSp)
29 ovex 6718 . . . . . . . . . . 11 (0[,]𝑁) ∈ V
3029inex1 4832 . . . . . . . . . 10 ((0[,]𝑁) ∩ ℤ) ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
321, 2, 3, 4, 5taylfvallem1 24156 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
33 eqid 2651 . . . . . . . . . 10 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3432, 33fmptd 6425 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
35 eqid 2651 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3635cnfldhaus 22635 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Haus
3736a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus)
3823, 26, 28, 31, 34, 35, 37haustsms 21986 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
3938ex 449 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
40 moanimv 2560 . . . . . . 7 (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ↔ (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
4139, 40sylibr 224 . . . . . 6 (𝜑 → ∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
42 moim 2548 . . . . . 6 (∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))) → (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) → ∃*𝑦 𝑥𝑇𝑦))
4322, 41, 42sylc 65 . . . . 5 (𝜑 → ∃*𝑦 𝑥𝑇𝑦)
4443alrimiv 1895 . . . 4 (𝜑 → ∀𝑥∃*𝑦 𝑥𝑇𝑦)
45 dffun6 5941 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑥∃*𝑦 𝑥𝑇𝑦))
4619, 44, 45sylanbrc 699 . . 3 (𝜑 → Fun 𝑇)
47 funfn 5956 . . 3 (Fun 𝑇𝑇 Fn dom 𝑇)
4846, 47sylib 208 . 2 (𝜑𝑇 Fn dom 𝑇)
49 rnss 5386 . . . 4 (𝑇 ⊆ (ℂ × ℂ) → ran 𝑇 ⊆ ran (ℂ × ℂ))
5016, 49syl 17 . . 3 (𝜑 → ran 𝑇 ⊆ ran (ℂ × ℂ))
51 rnxpss 5601 . . 3 ran (ℂ × ℂ) ⊆ ℂ
5250, 51syl6ss 3648 . 2 (𝜑 → ran 𝑇 ⊆ ℂ)
53 df-f 5930 . 2 (𝑇:dom 𝑇⟶ℂ ↔ (𝑇 Fn dom 𝑇 ∧ ran 𝑇 ⊆ ℂ))
5448, 52, 53sylanbrc 699 1 (𝜑𝑇:dom 𝑇⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  wal 1521   = wceq 1523  wcel 2030  ∃*wmo 2499  wral 2941  Vcvv 3231  cin 3606  wss 3607  {csn 4210  {cpr 4212   ciun 4552   class class class wbr 4685  cmpt 4762   × cxp 5141  dom cdm 5143  ran crn 5144  Rel wrel 5148  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   · cmul 9979  +∞cpnf 10109  cmin 10304   / cdiv 10722  0cn0 11330  cz 11415  [,]cicc 12216  cexp 12900  !cfa 13100  TopOpenctopn 16129  CMndccmn 18239  Ringcrg 18593  fldccnfld 19794  TopSpctps 20784  Hauscha 21160   tsums ctsu 21976   D𝑛 cdvn 23673   Tayl ctayl 24152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977  df-xms 22172  df-ms 22173  df-limc 23675  df-dv 23676  df-dvn 23677  df-tayl 24154
This theorem is referenced by:  tayl0  24161
  Copyright terms: Public domain W3C validator