MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfval Structured version   Visualization version   GIF version

Theorem taylfval 23831
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally or ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥.

This "extended" version of taylpfval 23837 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)

Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylfval (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥   𝑘,𝑁,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylfval
Dummy variables 𝑎 𝑛 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
2 df-tayl 23827 . . . . 5 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
32a1i 11 . . . 4 (𝜑 → Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))))
4 eqidd 2607 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 ∪ {+∞}) = (ℕ0 ∪ {+∞}))
5 oveq12 6533 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
65ad2antlr 758 . . . . . . . 8 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
76fveq1d 6087 . . . . . . 7 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((𝑠 D𝑛 𝑓)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
87dmeqd 5232 . . . . . 6 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → dom ((𝑠 D𝑛 𝑓)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘𝑘))
98iineq2dv 4470 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) = 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
107fveq1d 6087 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎))
1110oveq1d 6539 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)))
1211oveq1d 6539 . . . . . . . . 9 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))
1312mpteq2dva 4663 . . . . . . . 8 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))
1413oveq2d 6540 . . . . . . 7 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))
1514xpeq2d 5050 . . . . . 6 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
1615iuneq2d 4474 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
174, 9, 16mpt2eq123dv 6590 . . . 4 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
18 simpr 475 . . . . 5 ((𝜑𝑠 = 𝑆) → 𝑠 = 𝑆)
1918oveq2d 6540 . . . 4 ((𝜑𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
20 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
21 cnex 9870 . . . . . 6 ℂ ∈ V
2221a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
23 taylfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
24 taylfval.a . . . . 5 (𝜑𝐴𝑆)
25 elpm2r 7735 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2622, 20, 23, 24, 25syl22anc 1318 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
27 nn0ex 11142 . . . . . . 7 0 ∈ V
28 snex 4827 . . . . . . 7 {+∞} ∈ V
2927, 28unex 6828 . . . . . 6 (ℕ0 ∪ {+∞}) ∈ V
30 0xr 9939 . . . . . . . . . . 11 0 ∈ ℝ*
3130a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ ℝ*)
32 nn0ssre 11140 . . . . . . . . . . . . 13 0 ⊆ ℝ
33 ressxr 9936 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3432, 33sstri 3573 . . . . . . . . . . . 12 0 ⊆ ℝ*
35 pnfxr 11778 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
36 snssi 4276 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3735, 36ax-mp 5 . . . . . . . . . . . 12 {+∞} ⊆ ℝ*
3834, 37unssi 3746 . . . . . . . . . . 11 (ℕ0 ∪ {+∞}) ⊆ ℝ*
3938sseli 3560 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑛 ∈ ℝ*)
40 elun 3711 . . . . . . . . . . 11 (𝑛 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑛 ∈ ℕ0𝑛 ∈ {+∞}))
41 nn0ge0 11162 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 0 ≤ 𝑛)
42 0lepnf 11799 . . . . . . . . . . . . 13 0 ≤ +∞
43 elsni 4138 . . . . . . . . . . . . 13 (𝑛 ∈ {+∞} → 𝑛 = +∞)
4442, 43syl5breqr 4612 . . . . . . . . . . . 12 (𝑛 ∈ {+∞} → 0 ≤ 𝑛)
4541, 44jaoi 392 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ∈ {+∞}) → 0 ≤ 𝑛)
4640, 45sylbi 205 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ≤ 𝑛)
47 lbicc2 12112 . . . . . . . . . 10 ((0 ∈ ℝ*𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛) → 0 ∈ (0[,]𝑛))
4831, 39, 46, 47syl3anc 1317 . . . . . . . . 9 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ (0[,]𝑛))
49 0z 11218 . . . . . . . . 9 0 ∈ ℤ
50 inelcm 3980 . . . . . . . . 9 ((0 ∈ (0[,]𝑛) ∧ 0 ∈ ℤ) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
5148, 49, 50sylancl 692 . . . . . . . 8 (𝑛 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
52 fvex 6095 . . . . . . . . . 10 ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5352dmex 6965 . . . . . . . . 9 dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5453rgenw 2904 . . . . . . . 8 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
55 iinexg 4743 . . . . . . . 8 ((((0[,]𝑛) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5651, 54, 55sylancl 692 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5756rgen 2902 . . . . . 6 𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
58 eqid 2606 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
5958mpt2exxg 7107 . . . . . 6 (((ℕ0 ∪ {+∞}) ∈ V ∧ ∀𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
6029, 57, 59mp2an 703 . . . . 5 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V
6160a1i 11 . . . 4 (𝜑 → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
623, 17, 19, 20, 26, 61ovmpt2dx 6660 . . 3 (𝜑 → (𝑆 Tayl 𝐹) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
63 simprl 789 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑛 = 𝑁)
6463oveq2d 6540 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (0[,]𝑛) = (0[,]𝑁))
6564ineq1d 3771 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
66 simprr 791 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑎 = 𝐵)
6766fveq2d 6089 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵))
6867oveq1d 6539 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)))
6966oveq2d 6540 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑥𝑎) = (𝑥𝐵))
7069oveq1d 6539 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((𝑥𝑎)↑𝑘) = ((𝑥𝐵)↑𝑘))
7168, 70oveq12d 6542 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
7265, 71mpteq12dv 4654 . . . . . 6 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
7372oveq2d 6540 . . . . 5 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
7473xpeq2d 5050 . . . 4 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
7574iuneq2d 4474 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
76 simpr 475 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
7776oveq2d 6540 . . . . 5 ((𝜑𝑛 = 𝑁) → (0[,]𝑛) = (0[,]𝑁))
7877ineq1d 3771 . . . 4 ((𝜑𝑛 = 𝑁) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
79 iineq1 4462 . . . 4 (((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
8078, 79syl 17 . . 3 ((𝜑𝑛 = 𝑁) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
81 taylfval.n . . . . 5 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
82 pnfex 11779 . . . . . . 7 +∞ ∈ V
8382elsn2 4154 . . . . . 6 (𝑁 ∈ {+∞} ↔ 𝑁 = +∞)
8483orbi2i 539 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
8581, 84sylibr 222 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
86 elun 3711 . . . 4 (𝑁 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
8785, 86sylibr 222 . . 3 (𝜑𝑁 ∈ (ℕ0 ∪ {+∞}))
88 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8988ralrimiva 2945 . . . 4 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
90 oveq2 6532 . . . . . . . . . 10 (𝑛 = 𝑁 → (0[,]𝑛) = (0[,]𝑁))
9190ineq1d 3771 . . . . . . . . 9 (𝑛 = 𝑁 → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
9291neeq1d 2837 . . . . . . . 8 (𝑛 = 𝑁 → (((0[,]𝑛) ∩ ℤ) ≠ ∅ ↔ ((0[,]𝑁) ∩ ℤ) ≠ ∅))
9392, 51vtoclga 3241 . . . . . . 7 (𝑁 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
9487, 93syl 17 . . . . . 6 (𝜑 → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
95 r19.2z 4008 . . . . . 6 ((((0[,]𝑁) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9694, 89, 95syl2anc 690 . . . . 5 (𝜑 → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
97 elex 3181 . . . . . 6 (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
9897rexlimivw 3007 . . . . 5 (∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
99 eliin 4452 . . . . 5 (𝐵 ∈ V → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10096, 98, 993syl 18 . . . 4 (𝜑 → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10189, 100mpbird 245 . . 3 (𝜑𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
102 snssi 4276 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑥} ⊆ ℂ)
103102adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → {𝑥} ⊆ ℂ)
10420, 23, 24, 81, 88taylfvallem 23830 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
105 xpss12 5134 . . . . . . 7 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
106103, 104, 105syl2anc 690 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
107106ralrimiva 2945 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
108 iunss 4488 . . . . 5 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
109107, 108sylibr 222 . . . 4 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
11021, 21xpex 6834 . . . . 5 (ℂ × ℂ) ∈ V
111110ssex 4722 . . . 4 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
112109, 111syl 17 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
11362, 75, 80, 87, 101, 112ovmpt2dx 6660 . 2 (𝜑 → (𝑁(𝑆 Tayl 𝐹)𝐵) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
1141, 113syl5eq 2652 1 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2776  wral 2892  wrex 2893  Vcvv 3169  cun 3534  cin 3535  wss 3536  c0 3870  {csn 4121  {cpr 4123   ciun 4446   ciin 4447   class class class wbr 4574  cmpt 4634   × cxp 5023  dom cdm 5025  wf 5783  cfv 5787  (class class class)co 6524  cmpt2 6526  pm cpm 7719  cc 9787  cr 9788  0cc0 9789   · cmul 9794  +∞cpnf 9924  *cxr 9926  cle 9928  cmin 10114   / cdiv 10530  0cn0 11136  cz 11207  [,]cicc 12002  cexp 12674  !cfa 12874  fldccnfld 19510   tsums ctsu 21678   D𝑛 cdvn 23348   Tayl ctayl 23825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-icc 12006  df-fz 12150  df-fzo 12287  df-seq 12616  df-exp 12675  df-fac 12875  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-plusg 15724  df-mulr 15725  df-starv 15726  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-grp 17191  df-minusg 17192  df-cntz 17516  df-cmn 17961  df-abl 17962  df-mgp 18256  df-ur 18268  df-ring 18315  df-cring 18316  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cnp 20781  df-haus 20868  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-tsms 21679  df-xms 21873  df-ms 21874  df-limc 23350  df-dv 23351  df-dvn 23352  df-tayl 23827
This theorem is referenced by:  eltayl  23832  taylf  23833  taylpfval  23837
  Copyright terms: Public domain W3C validator