MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply2 Structured version   Visualization version   GIF version

Theorem taylply2 24167
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 24168 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylply2.1 (𝜑𝐷 ∈ (SubRing‘ℂfld))
taylply2.2 (𝜑𝐵𝐷)
taylply2.3 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
Assertion
Ref Expression
taylply2 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐷,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylply2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . . 5 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . . . . 5 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylpfval 24164 . . . 4 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
8 simpr 476 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
9 cnex 10055 . . . . . . . . . . . . 13 ℂ ∈ V
109a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
11 elpm2r 7917 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1210, 1, 2, 3, 11syl22anc 1367 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
13 dvnbss 23736 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
141, 12, 4, 13syl3anc 1366 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
15 fdm 6089 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
162, 15syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
1714, 16sseqtrd 3674 . . . . . . . . 9 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
18 recnprss 23713 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
191, 18syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
203, 19sstrd 3646 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
2117, 20sstrd 3646 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2221, 5sseldd 3637 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2322adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
248, 23subcld 10430 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
25 df-idp 23990 . . . . . . . 8 Xp = ( I ↾ ℂ)
26 mptresid 5491 . . . . . . . 8 (𝑥 ∈ ℂ ↦ 𝑥) = ( I ↾ ℂ)
2725, 26eqtr4i 2676 . . . . . . 7 Xp = (𝑥 ∈ ℂ ↦ 𝑥)
2827a1i 11 . . . . . 6 (𝜑Xp = (𝑥 ∈ ℂ ↦ 𝑥))
29 fconstmpt 5197 . . . . . . 7 (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵)
3029a1i 11 . . . . . 6 (𝜑 → (ℂ × {𝐵}) = (𝑥 ∈ ℂ ↦ 𝐵))
3110, 8, 23, 28, 30offval2 6956 . . . . 5 (𝜑 → (Xp𝑓 − (ℂ × {𝐵})) = (𝑥 ∈ ℂ ↦ (𝑥𝐵)))
32 eqidd 2652 . . . . 5 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
33 oveq1 6697 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
3433oveq2d 6706 . . . . . 6 (𝑦 = (𝑥𝐵) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3534sumeq2sdv 14479 . . . . 5 (𝑦 = (𝑥𝐵) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3624, 31, 32, 35fmptco 6436 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵}))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
377, 36eqtr4d 2688 . . 3 (𝜑𝑇 = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵}))))
38 taylply2.1 . . . . . 6 (𝜑𝐷 ∈ (SubRing‘ℂfld))
39 cnfldbas 19798 . . . . . . 7 ℂ = (Base‘ℂfld)
4039subrgss 18829 . . . . . 6 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ⊆ ℂ)
4138, 40syl 17 . . . . 5 (𝜑𝐷 ⊆ ℂ)
42 taylply2.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷)
4341, 4, 42elplyd 24003 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷))
44 cnfld1 19819 . . . . . . . 8 1 = (1r‘ℂfld)
4544subrg1cl 18836 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐷)
4638, 45syl 17 . . . . . 6 (𝜑 → 1 ∈ 𝐷)
47 plyid 24010 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 1 ∈ 𝐷) → Xp ∈ (Poly‘𝐷))
4841, 46, 47syl2anc 694 . . . . 5 (𝜑Xp ∈ (Poly‘𝐷))
49 taylply2.2 . . . . . 6 (𝜑𝐵𝐷)
50 plyconst 24007 . . . . . 6 ((𝐷 ⊆ ℂ ∧ 𝐵𝐷) → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
5141, 49, 50syl2anc 694 . . . . 5 (𝜑 → (ℂ × {𝐵}) ∈ (Poly‘𝐷))
52 subrgsubg 18834 . . . . . . 7 (𝐷 ∈ (SubRing‘ℂfld) → 𝐷 ∈ (SubGrp‘ℂfld))
5338, 52syl 17 . . . . . 6 (𝜑𝐷 ∈ (SubGrp‘ℂfld))
54 cnfldadd 19799 . . . . . . . 8 + = (+g‘ℂfld)
5554subgcl 17651 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 + 𝑣) ∈ 𝐷)
56553expb 1285 . . . . . 6 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
5753, 56sylan 487 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 + 𝑣) ∈ 𝐷)
58 cnfldmul 19800 . . . . . . . 8 · = (.r‘ℂfld)
5958subrgmcl 18840 . . . . . . 7 ((𝐷 ∈ (SubRing‘ℂfld) ∧ 𝑢𝐷𝑣𝐷) → (𝑢 · 𝑣) ∈ 𝐷)
60593expb 1285 . . . . . 6 ((𝐷 ∈ (SubRing‘ℂfld) ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
6138, 60sylan 487 . . . . 5 ((𝜑 ∧ (𝑢𝐷𝑣𝐷)) → (𝑢 · 𝑣) ∈ 𝐷)
62 ax-1cn 10032 . . . . . . 7 1 ∈ ℂ
63 cnfldneg 19820 . . . . . . 7 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
6462, 63ax-mp 5 . . . . . 6 ((invg‘ℂfld)‘1) = -1
65 eqid 2651 . . . . . . . 8 (invg‘ℂfld) = (invg‘ℂfld)
6665subginvcl 17650 . . . . . . 7 ((𝐷 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐷) → ((invg‘ℂfld)‘1) ∈ 𝐷)
6753, 46, 66syl2anc 694 . . . . . 6 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐷)
6864, 67syl5eqelr 2735 . . . . 5 (𝜑 → -1 ∈ 𝐷)
6948, 51, 57, 61, 68plysub 24020 . . . 4 (𝜑 → (Xp𝑓 − (ℂ × {𝐵})) ∈ (Poly‘𝐷))
7043, 69, 57, 61plyco 24042 . . 3 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵}))) ∈ (Poly‘𝐷))
7137, 70eqeltrd 2730 . 2 (𝜑𝑇 ∈ (Poly‘𝐷))
7237fveq2d 6233 . . . 4 (𝜑 → (deg‘𝑇) = (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵})))))
73 eqid 2651 . . . . 5 (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))))
74 eqid 2651 . . . . 5 (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = (deg‘(Xp𝑓 − (ℂ × {𝐵})))
7573, 74, 43, 69dgrco 24076 . . . 4 (𝜑 → (deg‘((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∘ (Xp𝑓 − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xp𝑓 − (ℂ × {𝐵})))))
76 eqid 2651 . . . . . . . . 9 (Xp𝑓 − (ℂ × {𝐵})) = (Xp𝑓 − (ℂ × {𝐵}))
7776plyremlem 24104 . . . . . . . 8 (𝐵 ∈ ℂ → ((Xp𝑓 − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7822, 77syl 17 . . . . . . 7 (𝜑 → ((Xp𝑓 − (ℂ × {𝐵})) ∈ (Poly‘ℂ) ∧ (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = 1 ∧ ((Xp𝑓 − (ℂ × {𝐵})) “ {0}) = {𝐵}))
7978simp2d 1094 . . . . . 6 (𝜑 → (deg‘(Xp𝑓 − (ℂ × {𝐵}))) = 1)
8079oveq2d 6706 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xp𝑓 − (ℂ × {𝐵})))) = ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1))
81 dgrcl 24034 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘))) ∈ (Poly‘𝐷) → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8243, 81syl 17 . . . . . . 7 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℕ0)
8382nn0cnd 11391 . . . . . 6 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ∈ ℂ)
8483mulid1d 10095 . . . . 5 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · 1) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8580, 84eqtrd 2685 . . . 4 (𝜑 → ((deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) · (deg‘(Xp𝑓 − (ℂ × {𝐵})))) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
8672, 75, 853eqtrd 2689 . . 3 (𝜑 → (deg‘𝑇) = (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))))
871adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
8812adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
89 elfznn0 12471 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9089adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
91 dvnf 23735 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
9287, 88, 90, 91syl3anc 1366 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
93 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
94 dvn2bss 23738 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9587, 88, 93, 94syl3anc 1366 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
965adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
9795, 96sseldd 3637 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9892, 97ffvelrnd 6400 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
99 faccl 13110 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
10090, 99syl 17 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
101100nncnd 11074 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
102100nnne0d 11103 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
10398, 101, 102divcld 10839 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
10443, 4, 103, 32dgrle 24044 . . 3 (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑦𝑘)))) ≤ 𝑁)
10586, 104eqbrtrd 4707 . 2 (𝜑 → (deg‘𝑇) ≤ 𝑁)
10671, 105jca 553 1 (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  {csn 4210  {cpr 4212   class class class wbr 4685  cmpt 4762   I cid 5052   × cxp 5141  ccnv 5142  dom cdm 5143  cres 5145  cima 5146  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  pm cpm 7900  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  ...cfz 12364  cexp 12900  !cfa 13100  Σcsu 14460  invgcminusg 17470  SubGrpcsubg 17635  SubRingcsubrg 18824  fldccnfld 19794   D𝑛 cdvn 23673  Polycply 23985  Xpcidp 23986  degcdgr 23988   Tayl ctayl 24152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977  df-xms 22172  df-ms 22173  df-0p 23482  df-limc 23675  df-dv 23676  df-dvn 23677  df-ply 23989  df-idp 23990  df-coe 23991  df-dgr 23992  df-tayl 24154
This theorem is referenced by:  taylply  24168  taylthlem2  24173
  Copyright terms: Public domain W3C validator