MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem1 Structured version   Visualization version   GIF version

Theorem taylthlem1 23845
Description: Lemma for taylth 23847. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 23847 itself we must restrict to . (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylthlem1.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylthlem1.f (𝜑𝐹:𝐴⟶ℂ)
taylthlem1.a (𝜑𝐴𝑆)
taylthlem1.d (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴)
taylthlem1.n (𝜑𝑁 ∈ ℕ)
taylthlem1.b (𝜑𝐵𝐴)
taylthlem1.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylthlem1.r 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
taylthlem1.i ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
Assertion
Ref Expression
taylthlem1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝐵,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑛,𝑁,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦   𝑇,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑛)

Proof of Theorem taylthlem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 taylthlem1.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 elfz1end 12194 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
31, 2sylib 206 . . 3 (𝜑𝑁 ∈ (1...𝑁))
4 oveq2 6532 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑁𝑚) = (𝑁 − 1))
54fveq2d 6089 . . . . . . . . . . 11 (𝑚 = 1 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
65fveq1d 6087 . . . . . . . . . 10 (𝑚 = 1 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥))
74fveq2d 6089 . . . . . . . . . . 11 (𝑚 = 1 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁 − 1)))
87fveq1d 6087 . . . . . . . . . 10 (𝑚 = 1 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥))
96, 8oveq12d 6542 . . . . . . . . 9 (𝑚 = 1 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
10 oveq2 6532 . . . . . . . . 9 (𝑚 = 1 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑1))
119, 10oveq12d 6542 . . . . . . . 8 (𝑚 = 1 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1)))
1211mpteq2dv 4664 . . . . . . 7 (𝑚 = 1 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))))
1312oveq1d 6539 . . . . . 6 (𝑚 = 1 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))
1413eleq2d 2669 . . . . 5 (𝑚 = 1 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵)))
1514imbi2d 328 . . . 4 (𝑚 = 1 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))))
16 oveq2 6532 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑁𝑚) = (𝑁𝑛))
1716fveq2d 6089 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁𝑛)))
1817fveq1d 6087 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥))
1916fveq2d 6089 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑛)))
2019fveq1d 6087 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥))
2118, 20oveq12d 6542 . . . . . . . . . 10 (𝑚 = 𝑛 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)))
22 oveq2 6532 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑𝑛))
2321, 22oveq12d 6542 . . . . . . . . 9 (𝑚 = 𝑛 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛)))
2423mpteq2dv 4664 . . . . . . . 8 (𝑚 = 𝑛 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛))))
25 fveq2 6085 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦))
26 fveq2 6085 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦))
2725, 26oveq12d 6542 . . . . . . . . . 10 (𝑥 = 𝑦 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)))
28 oveq1 6531 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐵) = (𝑦𝐵))
2928oveq1d 6539 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐵)↑𝑛) = ((𝑦𝐵)↑𝑛))
3027, 29oveq12d 6542 . . . . . . . . 9 (𝑥 = 𝑦 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛)))
3130cbvmptv 4669 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛))) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛)))
3224, 31syl6eq 2656 . . . . . . 7 (𝑚 = 𝑛 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))))
3332oveq1d 6539 . . . . . 6 (𝑚 = 𝑛 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))
3433eleq2d 2669 . . . . 5 (𝑚 = 𝑛 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵)))
3534imbi2d 328 . . . 4 (𝑚 = 𝑛 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))))
36 oveq2 6532 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑁𝑚) = (𝑁 − (𝑛 + 1)))
3736fveq2d 6089 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1))))
3837fveq1d 6087 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥))
3936fveq2d 6089 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1))))
4039fveq1d 6087 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥))
4138, 40oveq12d 6542 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)))
42 oveq2 6532 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑(𝑛 + 1)))
4341, 42oveq12d 6542 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1))))
4443mpteq2dv 4664 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))))
4544oveq1d 6539 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
4645eleq2d 2669 . . . . 5 (𝑚 = (𝑛 + 1) → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵)))
4746imbi2d 328 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
48 oveq2 6532 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
4948fveq2d 6089 . . . . . . . . . . 11 (𝑚 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)))
5049fveq1d 6087 . . . . . . . . . 10 (𝑚 = 𝑁 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥))
5148fveq2d 6089 . . . . . . . . . . 11 (𝑚 = 𝑁 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑁)))
5251fveq1d 6087 . . . . . . . . . 10 (𝑚 = 𝑁 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥))
5350, 52oveq12d 6542 . . . . . . . . 9 (𝑚 = 𝑁 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)))
54 oveq2 6532 . . . . . . . . 9 (𝑚 = 𝑁 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑𝑁))
5553, 54oveq12d 6542 . . . . . . . 8 (𝑚 = 𝑁 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁)))
5655mpteq2dv 4664 . . . . . . 7 (𝑚 = 𝑁 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))))
5756oveq1d 6539 . . . . . 6 (𝑚 = 𝑁 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))
5857eleq2d 2669 . . . . 5 (𝑚 = 𝑁 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵)))
5958imbi2d 328 . . . 4 (𝑚 = 𝑁 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))))
60 taylthlem1.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
61 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) = (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵))
62 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) = (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵))
6361, 62oveq12d 6542 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
64 eqid 2606 . . . . . . . . . . . . 13 (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
65 ovex 6552 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)) ∈ V
6663, 64, 65fvmpt 6173 . . . . . . . . . . . 12 (𝐵𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
6760, 66syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
68 taylthlem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ {ℝ, ℂ})
69 taylthlem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
70 taylthlem1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑆)
711nnnn0d 11195 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
72 nn0uz 11551 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
7371, 72syl6eleq 2694 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘0))
74 eluzfz2b 12173 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
7573, 74sylib 206 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (0...𝑁))
76 taylthlem1.d . . . . . . . . . . . . . 14 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴)
7760, 76eleqtrrd 2687 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
78 taylthlem1.t . . . . . . . . . . . . 13 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
7968, 69, 70, 75, 77, 78dvntaylp0 23844 . . . . . . . . . . . 12 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵))
8079oveq2d 6540 . . . . . . . . . . 11 (𝜑 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵)))
81 cnex 9870 . . . . . . . . . . . . . . . 16 ℂ ∈ V
8281a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ∈ V)
83 elpm2r 7735 . . . . . . . . . . . . . . 15 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
8482, 68, 69, 70, 83syl22anc 1318 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
85 dvnf 23410 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
8668, 84, 71, 85syl3anc 1317 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
8786, 77ffvelrnd 6250 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) ∈ ℂ)
8887subidd 10228 . . . . . . . . . . 11 (𝜑 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵)) = 0)
8967, 80, 883eqtrd 2644 . . . . . . . . . 10 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0)
90 funmpt 5823 . . . . . . . . . . 11 Fun (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
91 ovex 6552 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)) ∈ V
9291, 64dmmpti 5919 . . . . . . . . . . . 12 dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) = 𝐴
9360, 92syl6eleqr 2695 . . . . . . . . . . 11 (𝜑𝐵 ∈ dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))))
94 funbrfvb 6130 . . . . . . . . . . 11 ((Fun (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) ∧ 𝐵 ∈ dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))) → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
9590, 93, 94sylancr 693 . . . . . . . . . 10 (𝜑 → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
9689, 95mpbid 220 . . . . . . . . 9 (𝜑𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0)
97 nnm1nn0 11178 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
981, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ ℕ0)
99 dvnf 23410 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ)
10068, 84, 98, 99syl3anc 1317 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ)
101 dvnbss 23411 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ dom 𝐹)
10268, 84, 98, 101syl3anc 1317 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ dom 𝐹)
103 fdm 5947 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
10469, 103syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 = 𝐴)
105102, 104sseqtrd 3600 . . . . . . . . . . . . . . 15 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ 𝐴)
106 fzo0end 12378 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
107 elfzofz 12306 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ (0..^𝑁) → (𝑁 − 1) ∈ (0...𝑁))
1081, 106, 1073syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ (0...𝑁))
109 dvn2bss 23413 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
11068, 84, 108, 109syl3anc 1317 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
11176, 110eqsstr3d 3599 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
112105, 111eqssd 3581 . . . . . . . . . . . . . 14 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) = 𝐴)
113112feq2d 5927 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ))
114100, 113mpbid 220 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ)
115114ffvelrnda 6249 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
11676feq2d 5927 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ))
11786, 116mpbid 220 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ)
118117ffvelrnda 6249 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) ∈ ℂ)
1191nncnd 10880 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
120 1cnd 9909 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
121119, 120npcand 10244 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
122121fveq2d 6089 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = ((𝑆 D𝑛 𝐹)‘𝑁))
123 recnprss 23388 . . . . . . . . . . . . . . 15 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
12468, 123syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
125 dvnp1 23408 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
126124, 84, 98, 125syl3anc 1317 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
127122, 126eqtr3d 2642 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
128117feqmptd 6141 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦)))
129114feqmptd 6141 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦)))
130129oveq2d 6540 . . . . . . . . . . . 12 (𝜑 → (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = (𝑆 D (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦))))
131127, 128, 1303eqtr3rd 2649 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦)))
13270, 124sstrd 3574 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
133132sselda 3564 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
134 1nn0 11152 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
135134a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
136 elpm2r 7735 . . . . . . . . . . . . . . . . . . . 20 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ ∧ 𝐴𝑆)) → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆))
13782, 68, 114, 70, 136syl22anc 1318 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆))
138 dvn1 23409 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
139124, 137, 138syl2anc 690 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
140126, 122eqtr3d 2642 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑁))
141139, 140eqtrd 2640 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = ((𝑆 D𝑛 𝐹)‘𝑁))
142141dmeqd 5232 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
14377, 142eleqtrrd 2687 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1))
144 eqid 2606 . . . . . . . . . . . . . . 15 (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵)
14568, 114, 70, 135, 143, 144taylpf 23838 . . . . . . . . . . . . . 14 (𝜑 → (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵):ℂ⟶ℂ)
146120, 119pncan3d 10243 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
147146oveq1d 6539 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
148147, 78syl6reqr 2659 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 = ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))
149148oveq2d 6540 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D𝑛 𝑇) = (ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵)))
150149fveq1d 6087 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = ((ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))‘(𝑁 − 1)))
151146fveq2d 6089 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑁))
152151dmeqd 5232 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
15377, 152eleqtrrd 2687 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))))
15468, 69, 70, 98, 135, 153dvntaylp 23843 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))‘(𝑁 − 1)) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵))
155150, 154eqtrd 2640 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵))
156155feq1d 5926 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1)):ℂ⟶ℂ ↔ (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵):ℂ⟶ℂ))
157145, 156mpbird 245 . . . . . . . . . . . . 13 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)):ℂ⟶ℂ)
158157ffvelrnda 6249 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
159133, 158syldan 485 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
160 0nn0 11151 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
161160a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℕ0)
162 elpm2r 7735 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ ∧ 𝐴𝑆)) → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆))
16382, 68, 117, 70, 162syl22anc 1318 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆))
164 dvn0 23407 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = ((𝑆 D𝑛 𝐹)‘𝑁))
165124, 163, 164syl2anc 690 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = ((𝑆 D𝑛 𝐹)‘𝑁))
166165dmeqd 5232 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
16777, 166eleqtrrd 2687 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0))
168 eqid 2606 . . . . . . . . . . . . . . 15 (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵)
16968, 117, 70, 161, 167, 168taylpf 23838 . . . . . . . . . . . . . 14 (𝜑 → (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵):ℂ⟶ℂ)
170119addid2d 10085 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 + 𝑁) = 𝑁)
171170oveq1d 6539 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
172171, 78syl6eqr 2658 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
173172oveq2d 6540 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
174173fveq1d 6087 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵))‘𝑁) = ((ℂ D𝑛 𝑇)‘𝑁))
175170fveq2d 6089 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)) = ((𝑆 D𝑛 𝐹)‘𝑁))
176175dmeqd 5232 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
17777, 176eleqtrrd 2687 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)))
17868, 69, 70, 71, 161, 177dvntaylp 23843 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵))‘𝑁) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵))
179174, 178eqtr3d 2642 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵))
180179feq1d 5926 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑁):ℂ⟶ℂ ↔ (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵):ℂ⟶ℂ))
181169, 180mpbird 245 . . . . . . . . . . . . 13 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁):ℂ⟶ℂ)
182181ffvelrnda 6249 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
183133, 182syldan 485 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
184124sselda 3564 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
185184, 158syldan 485 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
186184, 182syldan 485 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
187 eqid 2606 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
188187cnfldtopon 22325 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
189 toponmax 20482 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
190188, 189mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
191 df-ss 3550 . . . . . . . . . . . . . 14 (𝑆 ⊆ ℂ ↔ (𝑆 ∩ ℂ) = 𝑆)
192124, 191sylib 206 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∩ ℂ) = 𝑆)
193 ssid 3583 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
194193a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℂ ⊆ ℂ)
195 mapsspm 7751 . . . . . . . . . . . . . . . . 17 (ℂ ↑𝑚 ℂ) ⊆ (ℂ ↑pm ℂ)
19668, 69, 70, 71, 77, 78taylpf 23838 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:ℂ⟶ℂ)
19781, 81elmap 7746 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ (ℂ ↑𝑚 ℂ) ↔ 𝑇:ℂ⟶ℂ)
198196, 197sylibr 222 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ (ℂ ↑𝑚 ℂ))
199195, 198sseldi 3562 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
200 dvnp1 23408 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))))
201194, 199, 98, 200syl3anc 1317 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))))
202121fveq2d 6089 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = ((ℂ D𝑛 𝑇)‘𝑁))
203201, 202eqtr3d 2642 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))) = ((ℂ D𝑛 𝑇)‘𝑁))
204157feqmptd 6141 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))
205204oveq2d 6540 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))
206181feqmptd 6141 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
207203, 205, 2063eqtr3d 2648 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
208187, 68, 190, 192, 158, 182, 207dvmptres3 23439 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝑆 ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
209 eqid 2606 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
210 resttopon 20714 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
211188, 124, 210sylancr 693 . . . . . . . . . . . . . . 15 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
212 topontop 20480 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
213211, 212syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
214 toponuni 20481 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
215211, 214syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
21670, 215sseqtrd 3600 . . . . . . . . . . . . . 14 (𝜑𝐴 ((TopOpen‘ℂfld) ↾t 𝑆))
217 eqid 2606 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
218217ntrss2 20610 . . . . . . . . . . . . . 14 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝐴 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
219213, 216, 218syl2anc 690 . . . . . . . . . . . . 13 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
220140dmeqd 5232 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
221220, 76eqtrd 2640 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = 𝐴)
222124, 114, 70, 209, 187dvbssntr 23384 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
223221, 222eqsstr3d 3599 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
224219, 223eqssd 3581 . . . . . . . . . . . 12 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) = 𝐴)
22568, 185, 186, 208, 70, 209, 187, 224dvmptres2 23445 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
22668, 115, 118, 131, 159, 183, 225dvmptsub 23450 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))))
227226breqd 4585 . . . . . . . . 9 (𝜑 → (𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
22896, 227mpbird 245 . . . . . . . 8 (𝜑𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0)
229 eqid 2606 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵)))
230115, 159subcld 10240 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) ∈ ℂ)
231 eqid 2606 . . . . . . . . . 10 (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))
232230, 231fmptd 6274 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))):𝐴⟶ℂ)
233209, 187, 229, 124, 232, 70eldv 23382 . . . . . . . 8 (𝜑 → (𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0 ↔ (𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ∧ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))))
234228, 233mpbid 220 . . . . . . 7 (𝜑 → (𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ∧ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵)))
235234simprd 477 . . . . . 6 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))
236 eldifi 3690 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
237 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥))
238 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥))
239237, 238oveq12d 6542 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
240 ovex 6552 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) ∈ V
241239, 231, 240fvmpt 6173 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
242 fveq2 6085 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵))
243 fveq2 6085 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵))
244242, 243oveq12d 6542 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
245 ovex 6552 . . . . . . . . . . . . . . 15 ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)) ∈ V
246244, 231, 245fvmpt 6173 . . . . . . . . . . . . . 14 (𝐵𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
24760, 246syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
24868, 69, 70, 108, 77, 78dvntaylp0 23844 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵))
249248oveq2d 6540 . . . . . . . . . . . . 13 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵)))
250114, 60ffvelrnd 6250 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) ∈ ℂ)
251250subidd 10228 . . . . . . . . . . . . 13 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵)) = 0)
252247, 249, 2513eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = 0)
253241, 252oveqan12rd 6544 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) − 0))
254114ffvelrnda 6249 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
255132sselda 3564 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
256157ffvelrnda 6249 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
257255, 256syldan 485 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
258254, 257subcld 10240 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) ∈ ℂ)
259258subid1d 10229 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) − 0) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
260253, 259eqtr2d 2641 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) = (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)))
261236, 260sylan2 489 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) = (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)))
262132ssdifssd 3706 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
263262sselda 3564 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
264132, 60sseldd 3565 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
265264adantr 479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
266263, 265subcld 10240 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
267266exp1d 12817 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑1) = (𝑥𝐵))
268261, 267oveq12d 6542 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1)) = ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵)))
269268mpteq2dva 4663 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))))
270269oveq1d 6539 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))
271235, 270eleqtrrd 2687 . . . . 5 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))
272271a1i 11 . . . 4 (𝑁 ∈ (ℤ‘1) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵)))
273 taylthlem1.i . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
274273expr 640 . . . . . 6 ((𝜑𝑛 ∈ (1..^𝑁)) → (0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵)))
275274expcom 449 . . . . 5 (𝑛 ∈ (1..^𝑁) → (𝜑 → (0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
276275a2d 29 . . . 4 (𝑛 ∈ (1..^𝑁) → ((𝜑 → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵)) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
27715, 35, 47, 59, 272, 276fzind2 12400 . . 3 (𝑁 ∈ (1...𝑁) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵)))
2783, 277mpcom 37 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))
279119subidd 10228 . . . . . . . . . 10 (𝜑 → (𝑁𝑁) = 0)
280279fveq2d 6089 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)) = ((𝑆 D𝑛 𝐹)‘0))
281 dvn0 23407 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
282124, 84, 281syl2anc 690 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
283280, 282eqtrd 2640 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)) = 𝐹)
284283fveq1d 6087 . . . . . . 7 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) = (𝐹𝑥))
285279fveq2d 6089 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑁)) = ((ℂ D𝑛 𝑇)‘0))
286 dvn0 23407 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝑇)‘0) = 𝑇)
287193, 199, 286sylancr 693 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘0) = 𝑇)
288285, 287eqtrd 2640 . . . . . . . 8 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑁)) = 𝑇)
289288fveq1d 6087 . . . . . . 7 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥) = (𝑇𝑥))
290284, 289oveq12d 6542 . . . . . 6 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) = ((𝐹𝑥) − (𝑇𝑥)))
291290oveq1d 6539 . . . . 5 (𝜑 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁)) = (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
292291mpteq2dv 4664 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁))))
293 taylthlem1.r . . . 4 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
294292, 293syl6eqr 2658 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) = 𝑅)
295294oveq1d 6539 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵) = (𝑅 lim 𝐵))
296278, 295eleqtrd 2686 1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  Vcvv 3169  cdif 3533  cin 3535  wss 3536  {csn 4121  {cpr 4123   cuni 4363   class class class wbr 4574  cmpt 4634  dom cdm 5025  Fun wfun 5781  wf 5783  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  pm cpm 7719  cc 9787  cr 9788  0cc0 9789  1c1 9790   + caddc 9792  cmin 10114   / cdiv 10530  cn 10864  0cn0 11136  cuz 11516  ...cfz 12149  ..^cfzo 12286  cexp 12674  t crest 15847  TopOpenctopn 15848  fldccnfld 19510  Topctop 20456  TopOnctopon 20457  intcnt 20570   lim climc 23346   D cdv 23347   D𝑛 cdvn 23348   Tayl ctayl 23825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-pm 7721  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-icc 12006  df-fz 12150  df-fzo 12287  df-seq 12616  df-exp 12675  df-fac 12875  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-clim 14010  df-sum 14208  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-pt 15871  df-prds 15874  df-xrs 15928  df-qtop 15933  df-imas 15934  df-xps 15936  df-mre 16012  df-mrc 16013  df-acs 16015  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-submnd 17102  df-grp 17191  df-minusg 17192  df-mulg 17307  df-cntz 17516  df-cmn 17961  df-abl 17962  df-mgp 18256  df-ur 18268  df-ring 18315  df-cring 18316  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cn 20780  df-cnp 20781  df-haus 20868  df-tx 21114  df-hmeo 21307  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-tsms 21679  df-xms 21873  df-ms 21874  df-tms 21875  df-cncf 22417  df-limc 23350  df-dv 23351  df-dvn 23352  df-tayl 23827
This theorem is referenced by:  taylth  23847
  Copyright terms: Public domain W3C validator