MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbw-ax4 Structured version   Visualization version   GIF version

Theorem tbw-ax4 1625
Description: The fourth of four axioms in the Tarski-Bernays-Wajsberg system.

This axiom was added to the Tarski-Bernays axiom system (see tb-ax1 32017, tb-ax2 32018, and tb-ax3 32019) by Wajsberg for completeness. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
tbw-ax4 (⊥ → 𝜑)

Proof of Theorem tbw-ax4
StepHypRef Expression
1 falim 1495 1 (⊥ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1483  df-fal 1486
This theorem is referenced by:  tbwlem2  1628  tbwlem4  1630  re1luk3  1634
  Copyright terms: Public domain W3C validator