MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc2 Structured version   Visualization version   GIF version

Theorem tc2 9172
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing 𝐴 as a member, gives almost the same set, except that 𝐴 itself must be added because it is not usually a member of (TC‘𝐴) (and it is never a member if 𝐴 is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1 𝐴 ∈ V
Assertion
Ref Expression
tc2 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Distinct variable group:   𝑥,𝐴

Proof of Theorem tc2
StepHypRef Expression
1 tc2.1 . . . . 5 𝐴 ∈ V
2 tcvalg 9168 . . . . 5 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
31, 2ax-mp 5 . . . 4 (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
4 trss 5172 . . . . . . 7 (Tr 𝑥 → (𝐴𝑥𝐴𝑥))
54imdistanri 570 . . . . . 6 ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴𝑥 ∧ Tr 𝑥))
65ss2abi 4040 . . . . 5 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
7 intss 4888 . . . . 5 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
86, 7ax-mp 5 . . . 4 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
93, 8eqsstri 3998 . . 3 (TC‘𝐴) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
101elintab 4878 . . . . 5 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥))
11 simpl 483 . . . . 5 ((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥)
1210, 11mpgbir 1791 . . . 4 𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
131snss 4710 . . . 4 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
1412, 13mpbi 231 . . 3 {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
159, 14unssi 4158 . 2 ((TC‘𝐴) ∪ {𝐴}) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
161snid 4591 . . . . 5 𝐴 ∈ {𝐴}
17 elun2 4150 . . . . 5 (𝐴 ∈ {𝐴} → 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}))
1816, 17ax-mp 5 . . . 4 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})
19 uniun 4849 . . . . . . 7 ((TC‘𝐴) ∪ {𝐴}) = ( (TC‘𝐴) ∪ {𝐴})
20 tctr 9170 . . . . . . . . 9 Tr (TC‘𝐴)
21 df-tr 5164 . . . . . . . . 9 (Tr (TC‘𝐴) ↔ (TC‘𝐴) ⊆ (TC‘𝐴))
2220, 21mpbi 231 . . . . . . . 8 (TC‘𝐴) ⊆ (TC‘𝐴)
231unisn 4846 . . . . . . . . 9 {𝐴} = 𝐴
24 tcid 9169 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
251, 24ax-mp 5 . . . . . . . . 9 𝐴 ⊆ (TC‘𝐴)
2623, 25eqsstri 3998 . . . . . . . 8 {𝐴} ⊆ (TC‘𝐴)
2722, 26unssi 4158 . . . . . . 7 ( (TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
2819, 27eqsstri 3998 . . . . . 6 ((TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
29 ssun1 4145 . . . . . 6 (TC‘𝐴) ⊆ ((TC‘𝐴) ∪ {𝐴})
3028, 29sstri 3973 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴})
31 df-tr 5164 . . . . 5 (Tr ((TC‘𝐴) ∪ {𝐴}) ↔ ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴}))
3230, 31mpbir 232 . . . 4 Tr ((TC‘𝐴) ∪ {𝐴})
33 fvex 6676 . . . . . 6 (TC‘𝐴) ∈ V
34 snex 5322 . . . . . 6 {𝐴} ∈ V
3533, 34unex 7458 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ∈ V
36 eleq2 2898 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (𝐴𝑥𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})))
37 treq 5169 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (Tr 𝑥 ↔ Tr ((TC‘𝐴) ∪ {𝐴})))
3836, 37anbi12d 630 . . . . 5 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴}))))
3935, 38elab 3664 . . . 4 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴})))
4018, 32, 39mpbir2an 707 . . 3 ((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
41 intss1 4882 . . 3 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴}))
4240, 41ax-mp 5 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴})
4315, 42eqssi 3980 1 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {cab 2796  Vcvv 3492  cun 3931  wss 3933  {csn 4557   cuni 4830   cint 4867  Tr wtr 5163  cfv 6348  TCctc 9166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-tc 9167
This theorem is referenced by:  tcsni  9173
  Copyright terms: Public domain W3C validator