MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcphlem1 Structured version   Visualization version   GIF version

Theorem tchcphlem1 22937
Description: Lemma for tchcph 22939: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n 𝐺 = (toℂHil‘𝑊)
tchcph.v 𝑉 = (Base‘𝑊)
tchcph.f 𝐹 = (Scalar‘𝑊)
tchcph.1 (𝜑𝑊 ∈ PreHil)
tchcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tchcph.h , = (·𝑖𝑊)
tchcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tchcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tchcph.k 𝐾 = (Base‘𝐹)
tchcph.m = (-g𝑊)
tchcphlem1.3 (𝜑𝑋𝑉)
tchcphlem1.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tchcphlem1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥,   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tchcphlem1
StepHypRef Expression
1 tchcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
2 phllmod 19889 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
3 lmodgrp 18786 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
41, 2, 33syl 18 . . . . . 6 (𝜑𝑊 ∈ Grp)
5 tchcphlem1.3 . . . . . 6 (𝜑𝑋𝑉)
6 tchcphlem1.4 . . . . . 6 (𝜑𝑌𝑉)
7 tchcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 tchcph.m . . . . . . 7 = (-g𝑊)
97, 8grpsubcl 17411 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
104, 5, 6, 9syl3anc 1323 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
11 tchval.n . . . . . 6 𝐺 = (toℂHil‘𝑊)
12 tchcph.f . . . . . 6 𝐹 = (Scalar‘𝑊)
13 tchcph.2 . . . . . 6 (𝜑𝐹 = (ℂflds 𝐾))
14 tchcph.h . . . . . 6 , = (·𝑖𝑊)
1511, 7, 12, 1, 13, 14tchcphlem3 22935 . . . . 5 ((𝜑 ∧ (𝑋 𝑌) ∈ 𝑉) → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1610, 15mpdan 701 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℝ)
1711, 7, 12, 1, 13, 14tchcphlem3 22935 . . . . . . 7 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
185, 17mpdan 701 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
1911, 7, 12, 1, 13, 14tchcphlem3 22935 . . . . . . 7 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
206, 19mpdan 701 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2118, 20readdcld 10014 . . . . 5 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℝ)
2211, 7, 12, 1, 13tchclm 22934 . . . . . . . . 9 (𝜑𝑊 ∈ ℂMod)
23 tchcph.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
2412, 23clmsscn 22782 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2522, 24syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ ℂ)
2612, 14, 7, 23ipcl 19892 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
271, 5, 6, 26syl3anc 1323 . . . . . . . 8 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
2825, 27sseldd 3589 . . . . . . 7 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
2912, 14, 7, 23ipcl 19892 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
301, 6, 5, 29syl3anc 1323 . . . . . . . 8 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
3125, 30sseldd 3589 . . . . . . 7 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
3228, 31addcld 10004 . . . . . 6 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ ℂ)
3332abscld 14104 . . . . 5 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ∈ ℝ)
3421, 33readdcld 10014 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ∈ ℝ)
3518recnd 10013 . . . . . 6 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
36 2re 11035 . . . . . . . 8 2 ∈ ℝ
37 tchcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
3837ralrimiva 2965 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
39 oveq12 6614 . . . . . . . . . . . . . 14 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
4039anidms 676 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
4140breq2d 4630 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
4241rspcv 3296 . . . . . . . . . . 11 (𝑋𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑋 , 𝑋)))
435, 38, 42sylc 65 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑋 , 𝑋))
4418, 43resqrtcld 14085 . . . . . . . . 9 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
45 oveq12 6614 . . . . . . . . . . . . . 14 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4645anidms 676 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
4746breq2d 4630 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
4847rspcv 3296 . . . . . . . . . . 11 (𝑌𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ (𝑌 , 𝑌)))
496, 38, 48sylc 65 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑌 , 𝑌))
5020, 49resqrtcld 14085 . . . . . . . . 9 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
5144, 50remulcld 10015 . . . . . . . 8 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
52 remulcl 9966 . . . . . . . 8 ((2 ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ) → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5336, 51, 52sylancr 694 . . . . . . 7 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℝ)
5453recnd 10013 . . . . . 6 (𝜑 → (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) ∈ ℂ)
5520recnd 10013 . . . . . 6 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
5635, 54, 55add32d 10208 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
5721, 53readdcld 10014 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) ∈ ℝ)
5856, 57eqeltrd 2704 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)) ∈ ℝ)
59 oveq12 6614 . . . . . . . . . . . 12 ((𝑥 = (𝑋 𝑌) ∧ 𝑥 = (𝑋 𝑌)) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
6059anidms 676 . . . . . . . . . . 11 (𝑥 = (𝑋 𝑌) → (𝑥 , 𝑥) = ((𝑋 𝑌) , (𝑋 𝑌)))
6160breq2d 4630 . . . . . . . . . 10 (𝑥 = (𝑋 𝑌) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6261rspcv 3296 . . . . . . . . 9 ((𝑋 𝑌) ∈ 𝑉 → (∀𝑥𝑉 0 ≤ (𝑥 , 𝑥) → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌))))
6310, 38, 62sylc 65 . . . . . . . 8 (𝜑 → 0 ≤ ((𝑋 𝑌) , (𝑋 𝑌)))
6416, 63absidd 14090 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = ((𝑋 𝑌) , (𝑋 𝑌)))
6512clmadd 22777 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → + = (+g𝐹))
6622, 65syl 17 . . . . . . . . . . 11 (𝜑 → + = (+g𝐹))
6766oveqd 6622 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) = ((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌)))
6866oveqd 6622 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) = ((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋)))
6967, 68oveq12d 6623 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
7012, 14, 7, 23ipcl 19892 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
711, 5, 5, 70syl3anc 1323 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑋) ∈ 𝐾)
7212, 14, 7, 23ipcl 19892 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
731, 6, 6, 72syl3anc 1323 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
7412, 23clmacl 22787 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ (𝑌 , 𝑌) ∈ 𝐾) → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7522, 71, 73, 74syl3anc 1323 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾)
7612, 23clmacl 22787 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7722, 27, 30, 76syl3anc 1323 . . . . . . . . . 10 (𝜑 → ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾)
7812, 23clmsub 22783 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ 𝐾 ∧ ((𝑋 , 𝑌) + (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
7922, 75, 77, 78syl3anc 1323 . . . . . . . . 9 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌) + (𝑌 , 𝑋))))
80 eqid 2626 . . . . . . . . . 10 (-g𝐹) = (-g𝐹)
81 eqid 2626 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
8212, 14, 7, 8, 80, 81, 1, 5, 6, 5, 6ip2subdi 19903 . . . . . . . . 9 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋)(+g𝐹)(𝑌 , 𝑌))(-g𝐹)((𝑋 , 𝑌)(+g𝐹)(𝑌 , 𝑋))))
8369, 79, 823eqtr4rd 2671 . . . . . . . 8 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋))))
8483fveq2d 6154 . . . . . . 7 (𝜑 → (abs‘((𝑋 𝑌) , (𝑋 𝑌))) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8564, 84eqtr3d 2662 . . . . . 6 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) = (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8625, 75sseldd 3589 . . . . . . 7 (𝜑 → ((𝑋 , 𝑋) + (𝑌 , 𝑌)) ∈ ℂ)
8786, 32abs2dif2d 14126 . . . . . 6 (𝜑 → (abs‘(((𝑋 , 𝑋) + (𝑌 , 𝑌)) − ((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8885, 87eqbrtrd 4640 . . . . 5 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
8918, 20, 43, 49addge0d 10548 . . . . . . 7 (𝜑 → 0 ≤ ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
9021, 89absidd 14090 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) = ((𝑋 , 𝑋) + (𝑌 , 𝑌)))
9190oveq1d 6620 . . . . 5 (𝜑 → ((abs‘((𝑋 , 𝑋) + (𝑌 , 𝑌))) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9288, 91breqtrd 4644 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))))
9328abscld 14104 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
94 remulcl 9966 . . . . . . . 8 ((2 ∈ ℝ ∧ (abs‘(𝑋 , 𝑌)) ∈ ℝ) → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9536, 93, 94sylancr 694 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ∈ ℝ)
9628, 31abstrid 14124 . . . . . . . 8 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
9793recnd 10013 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℂ)
98972timesd 11220 . . . . . . . . 9 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))))
9928abscjd 14118 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑋 , 𝑌)))
10012clmcj 22779 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
10122, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∗ = (*𝑟𝐹))
102101fveq1d 6152 . . . . . . . . . . . . 13 (𝜑 → (∗‘(𝑋 , 𝑌)) = ((*𝑟𝐹)‘(𝑋 , 𝑌)))
103 eqid 2626 . . . . . . . . . . . . . . 15 (*𝑟𝐹) = (*𝑟𝐹)
10412, 14, 7, 103ipcj 19893 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
1051, 5, 6, 104syl3anc 1323 . . . . . . . . . . . . 13 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
106102, 105eqtrd 2660 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
107106fveq2d 6154 . . . . . . . . . . 11 (𝜑 → (abs‘(∗‘(𝑋 , 𝑌))) = (abs‘(𝑌 , 𝑋)))
10899, 107eqtr3d 2662 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋 , 𝑌)) = (abs‘(𝑌 , 𝑋)))
109108oveq2d 6621 . . . . . . . . 9 (𝜑 → ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
11098, 109eqtrd 2660 . . . . . . . 8 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) = ((abs‘(𝑋 , 𝑌)) + (abs‘(𝑌 , 𝑋))))
11196, 110breqtrrd 4646 . . . . . . 7 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · (abs‘(𝑋 , 𝑌))))
112 tchcph.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
113 eqid 2626 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
114 eqid 2626 . . . . . . . . . 10 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
11511, 7, 12, 1, 13, 14, 112, 37, 23, 113, 114, 5, 6ipcau2 22936 . . . . . . . . 9 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)))
11611, 113, 7, 14tchnmval 22931 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
1174, 5, 116syl2anc 692 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑋) = (√‘(𝑋 , 𝑋)))
11811, 113, 7, 14tchnmval 22931 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
1194, 6, 118syl2anc 692 . . . . . . . . . 10 (𝜑 → ((norm‘𝐺)‘𝑌) = (√‘(𝑌 , 𝑌)))
120117, 119oveq12d 6623 . . . . . . . . 9 (𝜑 → (((norm‘𝐺)‘𝑋) · ((norm‘𝐺)‘𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
121115, 120breqtrd 4644 . . . . . . . 8 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
12236a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
123 2pos 11057 . . . . . . . . . 10 0 < 2
124123a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
125 lemul2 10821 . . . . . . . . 9 (((abs‘(𝑋 , 𝑌)) ∈ ℝ ∧ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
12693, 51, 122, 124, 125syl112anc 1327 . . . . . . . 8 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
127121, 126mpbid 222 . . . . . . 7 (𝜑 → (2 · (abs‘(𝑋 , 𝑌))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12833, 95, 53, 111, 127letrd 10139 . . . . . 6 (𝜑 → (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋))) ≤ (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))))
12933, 53, 21, 128leadd2dd 10587 . . . . 5 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
130129, 56breqtrrd 4646 . . . 4 (𝜑 → (((𝑋 , 𝑋) + (𝑌 , 𝑌)) + (abs‘((𝑋 , 𝑌) + (𝑌 , 𝑋)))) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
13116, 34, 58, 92, 130letrd 10139 . . 3 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ≤ (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
13216recnd 10013 . . . 4 (𝜑 → ((𝑋 𝑌) , (𝑋 𝑌)) ∈ ℂ)
133132sqsqrtd 14107 . . 3 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) = ((𝑋 𝑌) , (𝑋 𝑌)))
13435sqrtcld 14105 . . . . 5 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
13550recnd 10013 . . . . 5 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
136 binom2 12916 . . . . 5 (((√‘(𝑋 , 𝑋)) ∈ ℂ ∧ (√‘(𝑌 , 𝑌)) ∈ ℂ) → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
137134, 135, 136syl2anc 692 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)))
13835sqsqrtd 14107 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
139138oveq1d 6620 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) = ((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))))
14055sqsqrtd 14107 . . . . 5 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
141139, 140oveq12d 6623 . . . 4 (𝜑 → ((((√‘(𝑋 , 𝑋))↑2) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + ((√‘(𝑌 , 𝑌))↑2)) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
142137, 141eqtrd 2660 . . 3 (𝜑 → (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2) = (((𝑋 , 𝑋) + (2 · ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))) + (𝑌 , 𝑌)))
143131, 133, 1423brtr4d 4650 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2))
14416, 63resqrtcld 14085 . . 3 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ∈ ℝ)
14544, 50readdcld 10014 . . 3 (𝜑 → ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ∈ ℝ)
14616, 63sqrtge0d 14088 . . 3 (𝜑 → 0 ≤ (√‘((𝑋 𝑌) , (𝑋 𝑌))))
14718, 43sqrtge0d 14088 . . . 4 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
14820, 49sqrtge0d 14088 . . . 4 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
14944, 50, 147, 148addge0d 10548 . . 3 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
150144, 145, 146, 149le2sqd 12981 . 2 (𝜑 → ((√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))) ↔ ((√‘((𝑋 𝑌) , (𝑋 𝑌)))↑2) ≤ (((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))↑2)))
151143, 150mpbird 247 1 (𝜑 → (√‘((𝑋 𝑌) , (𝑋 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wral 2912  wss 3560   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211   / cdiv 10629  2c2 11015  cexp 12797  ccj 13765  csqrt 13902  abscabs 13903  Basecbs 15776  s cress 15777  +gcplusg 15857  *𝑟cstv 15859  Scalarcsca 15860  ·𝑖cip 15862  Grpcgrp 17338  -gcsg 17340  LModclmod 18779  fldccnfld 19660  PreHilcphl 19883  normcnm 22286  ℂModcclm 22765  toℂHilctch 22870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-tpos 7298  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12266  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mhm 17251  df-grp 17341  df-minusg 17342  df-sbg 17343  df-subg 17507  df-ghm 17574  df-cmn 18111  df-abl 18112  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-invr 18588  df-dvr 18599  df-rnghom 18631  df-drng 18665  df-subrg 18694  df-staf 18761  df-srng 18762  df-lmod 18781  df-lmhm 18936  df-lvec 19017  df-sra 19086  df-rgmod 19087  df-cnfld 19661  df-phl 19885  df-nm 22292  df-tng 22294  df-clm 22766  df-tch 22872
This theorem is referenced by:  tchcph  22939
  Copyright terms: Public domain W3C validator