MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcmin Structured version   Visualization version   GIF version

Theorem tcmin 8561
Description: Defining property of the transitive closure function: it is a subset of any transitive class containing 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcmin (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))

Proof of Theorem tcmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcvalg 8558 . . . . 5 (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 fvex 6158 . . . . 5 (TC‘𝐴) ∈ V
31, 2syl6eqelr 2707 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
4 intexab 4782 . . . 4 (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
53, 4sylibr 224 . . 3 (𝐴𝑉 → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
6 ssin 3813 . . . . . . . . 9 ((𝐴𝑥𝐴𝐵) ↔ 𝐴 ⊆ (𝑥𝐵))
76biimpi 206 . . . . . . . 8 ((𝐴𝑥𝐴𝐵) → 𝐴 ⊆ (𝑥𝐵))
8 trin 4723 . . . . . . . 8 ((Tr 𝑥 ∧ Tr 𝐵) → Tr (𝑥𝐵))
97, 8anim12i 589 . . . . . . 7 (((𝐴𝑥𝐴𝐵) ∧ (Tr 𝑥 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
109an4s 868 . . . . . 6 (((𝐴𝑥 ∧ Tr 𝑥) ∧ (𝐴𝐵 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
1110expcom 451 . . . . 5 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
12 vex 3189 . . . . . . . . 9 𝑥 ∈ V
1312inex1 4759 . . . . . . . 8 (𝑥𝐵) ∈ V
14 sseq2 3606 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐴𝑦𝐴 ⊆ (𝑥𝐵)))
15 treq 4718 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (Tr 𝑦 ↔ Tr (𝑥𝐵)))
1614, 15anbi12d 746 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐴𝑦 ∧ Tr 𝑦) ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
1713, 16elab 3333 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
18 intss1 4457 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
1917, 18sylbir 225 . . . . . 6 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
20 inss2 3812 . . . . . 6 (𝑥𝐵) ⊆ 𝐵
2119, 20syl6ss 3595 . . . . 5 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵)
2211, 21syl6 35 . . . 4 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2322exlimdv 1858 . . 3 ((𝐴𝐵 ∧ Tr 𝐵) → (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
245, 23syl5com 31 . 2 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
25 tcvalg 8558 . . 3 (𝐴𝑉 → (TC‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)})
2625sseq1d 3611 . 2 (𝐴𝑉 → ((TC‘𝐴) ⊆ 𝐵 {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2724, 26sylibrd 249 1 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  {cab 2607  Vcvv 3186  cin 3554  wss 3555   cint 4440  Tr wtr 4712  cfv 5847  TCctc 8556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-tc 8557
This theorem is referenced by:  tcidm  8566  tc0  8567  tcwf  8690  itunitc  9187  grur1  9586
  Copyright terms: Public domain W3C validator