MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tctr Structured version   Visualization version   GIF version

Theorem tctr 9184
Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tctr Tr (TC‘𝐴)

Proof of Theorem tctr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trint 5190 . . . 4 (∀𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 vex 3499 . . . . . 6 𝑦 ∈ V
3 sseq2 3995 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
4 treq 5180 . . . . . . 7 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
53, 4anbi12d 632 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴𝑦 ∧ Tr 𝑦)))
62, 5elab 3669 . . . . 5 (𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴𝑦 ∧ Tr 𝑦))
76simprbi 499 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → Tr 𝑦)
81, 7mprg 3154 . . 3 Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
9 tcvalg 9182 . . . 4 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
10 treq 5180 . . . 4 ((TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
119, 10syl 17 . . 3 (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
128, 11mpbiri 260 . 2 (𝐴 ∈ V → Tr (TC‘𝐴))
13 tr0 5185 . . 3 Tr ∅
14 fvprc 6665 . . . 4 𝐴 ∈ V → (TC‘𝐴) = ∅)
15 treq 5180 . . . 4 ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅))
1614, 15syl 17 . . 3 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅))
1713, 16mpbiri 260 . 2 𝐴 ∈ V → Tr (TC‘𝐴))
1812, 17pm2.61i 184 1 Tr (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  Vcvv 3496  wss 3938  c0 4293   cint 4878  Tr wtr 5174  cfv 6357  TCctc 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-tc 9181
This theorem is referenced by:  tc2  9186  tcidm  9190  itunitc1  9844
  Copyright terms: Public domain W3C validator