MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgdrng Structured version   Visualization version   GIF version

Theorem tdrgdrng 22774
Description: A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgdrng (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing)

Proof of Theorem tdrgdrng
StepHypRef Expression
1 eqid 2819 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2819 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 22766 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
43simp2bi 1141 1 (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6348  (class class class)co 7148  s cress 16476  mulGrpcmgp 19231  Unitcui 19381  DivRingcdr 19494  TopGrpctgp 22671  TopRingctrg 22756  TopDRingctdrg 22757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7151  df-tdrg 22761
This theorem is referenced by:  tvclvec  22799
  Copyright terms: Public domain W3C validator