MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgtrg Structured version   Visualization version   GIF version

Theorem tdrgtrg 22783
Description: A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgtrg (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)

Proof of Theorem tdrgtrg
StepHypRef Expression
1 eqid 2823 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2823 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 22776 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
43simp1bi 1141 1 (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  cfv 6357  (class class class)co 7158  s cress 16486  mulGrpcmgp 19241  Unitcui 19391  DivRingcdr 19504  TopGrpctgp 22681  TopRingctrg 22766  TopDRingctdrg 22767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-tdrg 22771
This theorem is referenced by:  tdrgring  22785  tdrgtmd  22786  tdrgtps  22787  dvrcn  22794
  Copyright terms: Public domain W3C validator