MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsum Structured version   Visualization version   GIF version

Theorem telgsum 19043
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.)
Hypotheses
Ref Expression
telgsum.b 𝐵 = (Base‘𝐺)
telgsum.g (𝜑𝐺 ∈ Abel)
telgsum.m = (-g𝐺)
telgsum.0 0 = (0g𝐺)
telgsum.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
telgsum.s (𝜑𝑆 ∈ ℕ0)
telgsum.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
telgsum.c (𝑘 = 𝑖𝐴 = 𝐶)
telgsum.d (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
telgsum.e (𝑘 = 0 → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsum (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑆,𝑖,𝑘   𝜑,𝑖,𝑘   0 ,𝑖,𝑘   ,𝑖
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsum
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
2 telgsum.c . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐶)
32adantl 482 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐶)
41, 3csbied 3916 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐴 = 𝐶)
54eqcomd 2824 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐶 = 𝑖 / 𝑘𝐴)
6 peano2nn0 11925 . . . . . . . 8 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
76adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
8 telgsum.d . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷)
98adantl 482 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐷)
107, 9csbied 3916 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐴 = 𝐷)
1110eqcomd 2824 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐷 = (𝑖 + 1) / 𝑘𝐴)
125, 11oveq12d 7163 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝐶 𝐷) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1312mpteq2dva 5152 . . 3 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷)) = (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1413oveq2d 7161 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
15 telgsum.b . . 3 𝐵 = (Base‘𝐺)
16 telgsum.g . . 3 (𝜑𝐺 ∈ Abel)
17 telgsum.m . . 3 = (-g𝐺)
18 telgsum.0 . . 3 0 = (0g𝐺)
19 telgsum.f . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐵)
20 telgsum.s . . 3 (𝜑𝑆 ∈ ℕ0)
21 telgsum.u . . 3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐴 = 0 ))
2215, 16, 17, 18, 19, 20, 21telgsums 19042 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = 0 / 𝑘𝐴)
23 c0ex 10623 . . . 4 0 ∈ V
2423a1i 11 . . 3 (𝜑 → 0 ∈ V)
25 telgsum.e . . . 4 (𝑘 = 0 → 𝐴 = 𝐸)
2625adantl 482 . . 3 ((𝜑𝑘 = 0) → 𝐴 = 𝐸)
2724, 26csbied 3916 . 2 (𝜑0 / 𝑘𝐴 = 𝐸)
2814, 22, 273eqtrd 2857 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 𝐷))) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  csb 3880   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528   < clt 10663  0cn0 11885  Basecbs 16471  0gc0g 16701   Σg cgsu 16702  -gcsg 18043  Abelcabl 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-abl 18838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator