Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cl Structured version   Visualization version   GIF version

Theorem tendo0cl 36580
 Description: The additive identity is a trace-perserving endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0cl ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0cl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . 2 (le‘𝐾) = (le‘𝐾)
2 tendo0.h . 2 𝐻 = (LHyp‘𝐾)
3 tendo0.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2760 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendo0.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 tendo0.b . . . . 5 𝐵 = (Base‘𝐾)
87, 2, 3idltrn 35939 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
98adantr 472 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → ( I ↾ 𝐵) ∈ 𝑇)
10 tendo0.o . . . 4 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1110tendo0cbv 36576 . . 3 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
129, 11fmptd 6548 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂:𝑇𝑇)
137, 2, 3, 5, 10tendo0co2 36578 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑂‘(𝑔)) = ((𝑂𝑔) ∘ (𝑂)))
147, 2, 3, 5, 10, 1, 4tendo0tp 36579 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑂𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
151, 2, 3, 4, 5, 6, 12, 13, 14istendod 36552 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ↦ cmpt 4881   I cid 5173   ↾ cres 5268  ‘cfv 6049  Basecbs 16059  lecple 16150  HLchlt 35140  LHypclh 35773  LTrncltrn 35890  trLctrl 35948  TEndoctendo 36542 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-riotaBAD 34742 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-undef 7568  df-map 8025  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949  df-tendo 36545 This theorem is referenced by:  tendo0pl  36581  tendo0plr  36582  tendoipl  36587  tendoid0  36615  tendo0mul  36616  tendo0mulr  36617  tendoex  36765  cdleml5N  36770  erngdvlem1  36778  erngdvlem4  36781  erng0g  36784  erngdvlem1-rN  36786  erngdvlem4-rN  36789  dvh0g  36902  dvhopN  36907  dib1dim  36956  dib1dim2  36959  dibss  36960  diblss  36961  diblsmopel  36962  dicn0  36983  cdlemn4  36989  cdlemn4a  36990  cdlemn6  36993  dihopelvalcpre  37039  dihmeetlem4preN  37097  dihatlat  37125  dihatexv  37129
 Copyright terms: Public domain W3C validator