Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0tp Structured version   Visualization version   GIF version

Theorem tendo0tp 35584
Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0tp.l = (le‘𝐾)
tendo0tp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendo0tp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0tp
StepHypRef Expression
1 tendo0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 tendo0.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2tendo02 35582 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
43adantl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑂𝐹) = ( I ↾ 𝐵))
54fveq2d 6157 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (𝑅‘( I ↾ 𝐵)))
6 eqid 2621 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 tendo0tp.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
92, 6, 7, 8trlid0 34970 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
109adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
115, 10eqtrd 2655 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (0.‘𝐾))
12 hlop 34156 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
1312ad2antrr 761 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
14 tendo0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
152, 7, 14, 8trlcl 34958 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
16 tendo0tp.l . . . 4 = (le‘𝐾)
172, 16, 6op0le 33980 . . 3 ((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ 𝐵) → (0.‘𝐾) (𝑅𝐹))
1813, 15, 17syl2anc 692 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (0.‘𝐾) (𝑅𝐹))
1911, 18eqbrtrd 4640 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4618  cmpt 4678   I cid 4989  cres 5081  cfv 5852  Basecbs 15788  lecple 15876  0.cp0 16965  OPcops 33966  HLchlt 34144  LHypclh 34777  LTrncltrn 34894  trLctrl 34952  TEndoctendo 35547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-map 7811  df-preset 16856  df-poset 16874  df-plt 16886  df-lub 16902  df-glb 16903  df-join 16904  df-meet 16905  df-p0 16967  df-p1 16968  df-lat 16974  df-clat 17036  df-oposet 33970  df-ol 33972  df-oml 33973  df-covers 34060  df-ats 34061  df-atl 34092  df-cvlat 34116  df-hlat 34145  df-lhyp 34781  df-laut 34782  df-ldil 34897  df-ltrn 34898  df-trl 34953
This theorem is referenced by:  tendo0cl  35585
  Copyright terms: Public domain W3C validator