![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoco2 | Structured version Visualization version GIF version |
Description: Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoco2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1237 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ HL) | |
2 | simp1r 1238 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑊 ∈ 𝐻) | |
3 | simp2l 1239 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑈 ∈ 𝐸) | |
4 | simp3l 1241 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
5 | simp3r 1242 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
6 | tendof.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | tendof.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | tendof.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
9 | 6, 7, 8 | tendovalco 36547 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑈 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑈‘(𝐹 ∘ 𝐺)) = ((𝑈‘𝐹) ∘ (𝑈‘𝐺))) |
10 | 1, 2, 3, 4, 5, 9 | syl32anc 1481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑈‘(𝐹 ∘ 𝐺)) = ((𝑈‘𝐹) ∘ (𝑈‘𝐺))) |
11 | simp2r 1240 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑉 ∈ 𝐸) | |
12 | 6, 7, 8 | tendovalco 36547 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑉‘(𝐹 ∘ 𝐺)) = ((𝑉‘𝐹) ∘ (𝑉‘𝐺))) |
13 | 1, 2, 11, 4, 5, 12 | syl32anc 1481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑉‘(𝐹 ∘ 𝐺)) = ((𝑉‘𝐹) ∘ (𝑉‘𝐺))) |
14 | 10, 13 | coeq12d 5434 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺))) = (((𝑈‘𝐹) ∘ (𝑈‘𝐺)) ∘ ((𝑉‘𝐹) ∘ (𝑉‘𝐺)))) |
15 | simp1 1130 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | 6, 7, 8 | tendocl 36549 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) ∈ 𝑇) |
17 | 15, 3, 5, 16 | syl3anc 1473 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑈‘𝐺) ∈ 𝑇) |
18 | 6, 7, 8 | tendocl 36549 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑉‘𝐹) ∈ 𝑇) |
19 | 15, 11, 4, 18 | syl3anc 1473 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑉‘𝐹) ∈ 𝑇) |
20 | 6, 7 | ltrnco4 36521 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝐺) ∈ 𝑇 ∧ (𝑉‘𝐹) ∈ 𝑇) → (((𝑈‘𝐹) ∘ (𝑈‘𝐺)) ∘ ((𝑉‘𝐹) ∘ (𝑉‘𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
21 | 15, 17, 19, 20 | syl3anc 1473 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑈‘𝐹) ∘ (𝑈‘𝐺)) ∘ ((𝑉‘𝐹) ∘ (𝑉‘𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
22 | 14, 21 | eqtrd 2786 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∘ ccom 5262 ‘cfv 6041 HLchlt 35132 LHypclh 35765 LTrncltrn 35882 TEndoctendo 36534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-riotaBAD 34734 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-1st 7325 df-2nd 7326 df-undef 7560 df-map 8017 df-preset 17121 df-poset 17139 df-plt 17151 df-lub 17167 df-glb 17168 df-join 17169 df-meet 17170 df-p0 17232 df-p1 17233 df-lat 17239 df-clat 17301 df-oposet 34958 df-ol 34960 df-oml 34961 df-covers 35048 df-ats 35049 df-atl 35080 df-cvlat 35104 df-hlat 35133 df-llines 35279 df-lplanes 35280 df-lvols 35281 df-lines 35282 df-psubsp 35284 df-pmap 35285 df-padd 35577 df-lhyp 35769 df-laut 35770 df-ldil 35885 df-ltrn 35886 df-trl 35941 df-tendo 36537 |
This theorem is referenced by: tendoplco2 36561 |
Copyright terms: Public domain | W3C validator |