Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoco2 Structured version   Visualization version   GIF version

Theorem tendoco2 35522
Description: Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoco2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))

Proof of Theorem tendoco2
StepHypRef Expression
1 simp1l 1083 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝐾 ∈ HL)
2 simp1r 1084 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝑊𝐻)
3 simp2l 1085 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝑈𝐸)
4 simp3l 1087 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
5 simp3r 1088 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
6 tendof.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 tendof.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendof.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 7, 8tendovalco 35519 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑈𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
101, 2, 3, 4, 5, 9syl32anc 1331 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
11 simp2r 1086 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝑉𝐸)
126, 7, 8tendovalco 35519 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑉‘(𝐹𝐺)) = ((𝑉𝐹) ∘ (𝑉𝐺)))
131, 2, 11, 4, 5, 12syl32anc 1331 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑉‘(𝐹𝐺)) = ((𝑉𝐹) ∘ (𝑉𝐺)))
1410, 13coeq12d 5251 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑈𝐺)) ∘ ((𝑉𝐹) ∘ (𝑉𝐺))))
15 simp1 1059 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
166, 7, 8tendocl 35521 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
1715, 3, 5, 16syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈𝐺) ∈ 𝑇)
186, 7, 8tendocl 35521 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
1915, 11, 4, 18syl3anc 1323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑉𝐹) ∈ 𝑇)
206, 7ltrnco4 35493 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (((𝑈𝐹) ∘ (𝑈𝐺)) ∘ ((𝑉𝐹) ∘ (𝑉𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
2115, 17, 19, 20syl3anc 1323 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (((𝑈𝐹) ∘ (𝑈𝐺)) ∘ ((𝑉𝐹) ∘ (𝑉𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
2214, 21eqtrd 2660 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  ccom 5083  cfv 5850  HLchlt 34103  LHypclh 34736  LTrncltrn 34853  TEndoctendo 35506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-riotaBAD 33705
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-undef 7345  df-map 7805  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-p1 16956  df-lat 16962  df-clat 17024  df-oposet 33929  df-ol 33931  df-oml 33932  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-llines 34250  df-lplanes 34251  df-lvols 34252  df-lines 34253  df-psubsp 34255  df-pmap 34256  df-padd 34548  df-lhyp 34740  df-laut 34741  df-ldil 34856  df-ltrn 34857  df-trl 34912  df-tendo 35509
This theorem is referenced by:  tendoplco2  35533
  Copyright terms: Public domain W3C validator