Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoeq2 Structured version   Visualization version   GIF version

Theorem tendoeq2 35569
Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 35619, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoeq2.b 𝐵 = (Base‘𝐾)
tendoeq2.h 𝐻 = (LHyp‘𝐾)
tendoeq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoeq2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoeq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Distinct variable groups:   𝑓,𝐸   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑈,𝑓   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem tendoeq2
StepHypRef Expression
1 tendoeq2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 tendoeq2.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 tendoeq2.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendoid 35568 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
54adantrr 752 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
61, 2, 3tendoid 35568 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
76adantrl 751 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
85, 7eqtr4d 2658 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵)))
9 fveq2 6153 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑈‘( I ↾ 𝐵)))
10 fveq2 6153 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑉𝑓) = (𝑉‘( I ↾ 𝐵)))
119, 10eqeq12d 2636 . . . . 5 (𝑓 = ( I ↾ 𝐵) → ((𝑈𝑓) = (𝑉𝑓) ↔ (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵))))
128, 11syl5ibrcom 237 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
1312ralrimivw 2962 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
14 r19.26 3058 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
15 jaob 821 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
16 exmidne 2800 . . . . . . . 8 (𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵))
17 pm5.5 351 . . . . . . . 8 ((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓)))
1816, 17ax-mp 5 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓))
1915, 18bitr3i 266 . . . . . 6 (((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (𝑈𝑓) = (𝑉𝑓))
2019ralbii 2975 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
2114, 20bitr3i 266 . . . 4 ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
22 tendoeq2.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
232, 22, 3tendoeq1 35559 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
24233expia 1264 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓) → 𝑈 = 𝑉))
2521, 24syl5bi 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉))
2613, 25mpand 710 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉))
27263impia 1258 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907   I cid 4989  cres 5081  cfv 5852  Basecbs 15788  HLchlt 34144  LHypclh 34777  LTrncltrn 34894  TEndoctendo 35547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-map 7811  df-preset 16856  df-poset 16874  df-plt 16886  df-lub 16902  df-glb 16903  df-join 16904  df-meet 16905  df-p0 16967  df-p1 16968  df-lat 16974  df-clat 17036  df-oposet 33970  df-ol 33972  df-oml 33973  df-covers 34060  df-ats 34061  df-atl 34092  df-cvlat 34116  df-hlat 34145  df-lhyp 34781  df-laut 34782  df-ldil 34897  df-ltrn 34898  df-trl 34953  df-tendo 35550
This theorem is referenced by:  tendocan  35619
  Copyright terms: Public domain W3C validator