Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendofset Structured version   Visualization version   GIF version

Theorem tendofset 37774
Description: The set of all trace-preserving endomorphisms on the set of translations for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
tendofset (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
Distinct variable groups:   𝑤,𝐻   𝑤,𝑠,𝑓,𝑔,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔,𝑠)   (𝑤,𝑓,𝑔,𝑠)   𝑉(𝑤,𝑓,𝑔,𝑠)

Proof of Theorem tendofset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3510 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6663 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 tendoset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2871 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6663 . . . . . . . 8 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6665 . . . . . . 7 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76, 6feq23d 6502 . . . . . 6 (𝑘 = 𝐾 → (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ↔ 𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤)))
86raleqdv 3413 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
96, 8raleqbidv 3399 . . . . . 6 (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
10 fveq2 6663 . . . . . . . . . 10 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1110fveq1d 6665 . . . . . . . . 9 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1211fveq1d 6665 . . . . . . . 8 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘(𝑠𝑓)) = (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)))
13 fveq2 6663 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
14 tendoset.l . . . . . . . . 9 = (le‘𝐾)
1513, 14syl6eqr 2871 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1611fveq1d 6665 . . . . . . . 8 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
1712, 15, 16breq123d 5071 . . . . . . 7 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)))
186, 17raleqbidv 3399 . . . . . 6 (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)))
197, 9, 183anbi123d 1427 . . . . 5 (𝑘 = 𝐾 → ((𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))))
2019abbidv 2882 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})
214, 20mpteq12dv 5142 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
22 df-tendo 37771 . . 3 TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}))
2321, 22, 3mptfvmpt 6981 . 2 (𝐾 ∈ V → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
241, 23syl 17 1 (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  wral 3135  Vcvv 3492   class class class wbr 5057  cmpt 5137  ccom 5552  wf 6344  cfv 6348  lecple 16560  LHypclh 37000  LTrncltrn 37117  trLctrl 37174  TEndoctendo 37768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-tendo 37771
This theorem is referenced by:  tendoset  37775
  Copyright terms: Public domain W3C validator