Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Structured version   Visualization version   GIF version

Theorem tendoid0 34927
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoid0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 1081 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
2 tendoid0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3 tendoid0.b . . . . . 6 𝐵 = (Base‘𝐾)
42, 3tendo02 34889 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
51, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑂𝐹) = ( I ↾ 𝐵))
65eqeq2d 2619 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) ↔ (𝑈𝐹) = ( I ↾ 𝐵)))
7 simpl1 1056 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1057 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈𝐸)
9 tendoid0.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 tendoid0.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
123, 9, 10, 11, 2tendo0cl 34892 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
137, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑂𝐸)
14 simpr 475 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝑈𝐹) = (𝑂𝐹))
15 simpl3l 1108 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹𝑇)
16 simpl3r 1109 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹 ≠ ( I ↾ 𝐵))
173, 9, 10, 11tendocan 34926 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑂𝐸 ∧ (𝑈𝐹) = (𝑂𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂)
187, 8, 13, 14, 15, 16, 17syl132anc 1335 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈 = 𝑂)
1918ex 448 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) → 𝑈 = 𝑂))
206, 19sylbird 248 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂))
21 fveq1 6087 . . . 4 (𝑈 = 𝑂 → (𝑈𝐹) = (𝑂𝐹))
2221eqeq1d 2611 . . 3 (𝑈 = 𝑂 → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ (𝑂𝐹) = ( I ↾ 𝐵)))
235, 22syl5ibrcom 235 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈𝐹) = ( I ↾ 𝐵)))
2420, 23impbid 200 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  cmpt 4637   I cid 4938  cres 5030  cfv 5790  Basecbs 15641  HLchlt 33451  LHypclh 34084  LTrncltrn 34201  TEndoctendo 34854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33053
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-undef 7263  df-map 7723  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-llines 33598  df-lplanes 33599  df-lvols 33600  df-lines 33601  df-psubsp 33603  df-pmap 33604  df-padd 33896  df-lhyp 34088  df-laut 34089  df-ldil 34204  df-ltrn 34205  df-trl 34260  df-tendo 34857
This theorem is referenced by:  tendoconid  34931  tendotr  34932  cdleml3N  35080  tendospcanN  35126
  Copyright terms: Public domain W3C validator