Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoidcl Structured version   Visualization version   GIF version

Theorem tendoidcl 35558
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoidcl ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)

Proof of Theorem tendoidcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (le‘𝐾) = (le‘𝐾)
2 tendof.h . 2 𝐻 = (LHyp‘𝐾)
3 tendof.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2621 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 f1oi 6133 . . 3 ( I ↾ 𝑇):𝑇1-1-onto𝑇
8 f1of 6096 . . 3 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
97, 8mp1i 13 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇):𝑇𝑇)
102, 3ltrnco 35508 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (𝑓𝑔) ∈ 𝑇)
11 fvresi 6396 . . . 4 ((𝑓𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
1210, 11syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
13 fvresi 6396 . . . . 5 (𝑓𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓)
14133ad2ant2 1081 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
15 fvresi 6396 . . . . 5 (𝑔𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔)
16153ad2ant3 1082 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔)
1714, 16coeq12d 5248 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓𝑔))
1812, 17eqtr4d 2658 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)))
1913adantl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
2019fveq2d 6154 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓))
21 hllat 34151 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2221ad2antrr 761 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐾 ∈ Lat)
23 eqid 2621 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2423, 2, 3, 4trlcl 34952 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
2523, 1latref 16977 . . . 4 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2622, 24, 25syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2720, 26eqbrtrd 4637 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
281, 2, 3, 4, 5, 6, 9, 18, 27istendod 35551 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4615   I cid 4986  cres 5078  ccom 5080  wf 5845  1-1-ontowf1o 5848  cfv 5849  Basecbs 15784  lecple 15872  Latclat 16969  HLchlt 34138  LHypclh 34771  LTrncltrn 34888  trLctrl 34946  TEndoctendo 35541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-riotaBAD 33740
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-1st 7116  df-2nd 7117  df-undef 7347  df-map 7807  df-preset 16852  df-poset 16870  df-plt 16882  df-lub 16898  df-glb 16899  df-join 16900  df-meet 16901  df-p0 16963  df-p1 16964  df-lat 16970  df-clat 17032  df-oposet 33964  df-ol 33966  df-oml 33967  df-covers 34054  df-ats 34055  df-atl 34086  df-cvlat 34110  df-hlat 34139  df-llines 34285  df-lplanes 34286  df-lvols 34287  df-lines 34288  df-psubsp 34290  df-pmap 34291  df-padd 34583  df-lhyp 34775  df-laut 34776  df-ldil 34891  df-ltrn 34892  df-trl 34947  df-tendo 35544
This theorem is referenced by:  cdleml8  35772  erng1lem  35776  erngdvlem3  35779  erng1r  35784  erngdvlem3-rN  35787  erngdvlem4-rN  35788  dvalveclem  35815  dvhlveclem  35898  dvheveccl  35902  dvhopN  35906  diclspsn  35984  cdlemn4  35988  cdlemn4a  35989  cdlemn11a  35997  dihord6apre  36046  dihatlat  36124  dihatexv  36128
  Copyright terms: Public domain W3C validator