Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcl Structured version   Visualization version   GIF version

Theorem tendoplcl 35588
 Description: Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendoplcl
Dummy variables 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (le‘𝐾) = (le‘𝐾)
2 tendopl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendopl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2621 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendopl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1059 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl1 1062 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1063 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑈𝐸)
9 simpr 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
102, 3, 5tendocl 35574 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
117, 8, 9, 10syl3anc 1323 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
12 simpl3 1064 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑉𝐸)
132, 3, 5tendocl 35574 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
147, 12, 9, 13syl3anc 1323 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
152, 3ltrnco 35526 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) ∈ 𝑇)
167, 11, 14, 15syl3anc 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) ∈ 𝑇)
17 eqid 2621 . . . 4 (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔)))
1816, 17fmptd 6351 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))):𝑇𝑇)
19 tendopl.p . . . . . 6 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2019, 3tendopl 35583 . . . . 5 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
21203adant1 1077 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
2221feq1d 5997 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → ((𝑈𝑃𝑉):𝑇𝑇 ↔ (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))):𝑇𝑇))
2318, 22mpbird 247 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉):𝑇𝑇)
24 simp11 1089 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simp12 1090 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → 𝑈𝐸)
26 simp13 1091 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → 𝑉𝐸)
27 3simpc 1058 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → (𝑇𝑖𝑇))
282, 3, 5, 19tendoplco2 35586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑇𝑖𝑇)) → ((𝑈𝑃𝑉)‘(𝑖)) = (((𝑈𝑃𝑉)‘) ∘ ((𝑈𝑃𝑉)‘𝑖)))
2924, 25, 26, 27, 28syl121anc 1328 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → ((𝑈𝑃𝑉)‘(𝑖)) = (((𝑈𝑃𝑉)‘) ∘ ((𝑈𝑃𝑉)‘𝑖)))
30 simpl1 1062 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31 simpl2 1063 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑈𝐸)
32 simpl3 1064 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑉𝐸)
33 simpr 477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑇)
342, 3, 5, 19, 1, 4tendopltp 35587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝑈𝑃𝑉)‘))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘))
3530, 31, 32, 33, 34syl121anc 1328 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝑈𝑃𝑉)‘))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘))
361, 2, 3, 4, 5, 6, 23, 29, 35istendod 35569 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   class class class wbr 4623   ↦ cmpt 4683   ∘ ccom 5088  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ↦ cmpt2 6617  lecple 15888  HLchlt 34156  LHypclh 34789  LTrncltrn 34906  trLctrl 34964  TEndoctendo 35559 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-riotaBAD 33758 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-undef 7359  df-map 7819  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-p1 16980  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-lplanes 34304  df-lvols 34305  df-lines 34306  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910  df-trl 34965  df-tendo 35562 This theorem is referenced by:  tendoplcom  35589  tendoplass  35590  tendodi1  35591  tendodi2  35592  tendo0pl  35598  tendoipl  35604  erngdvlem1  35795  erngdvlem3  35797  erngdvlem1-rN  35803  erngdvlem3-rN  35805  dvalveclem  35833  dvhvaddcl  35903  dicvaddcl  35998
 Copyright terms: Public domain W3C validator