Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Structured version   Visualization version   GIF version

Theorem tendopltp 34889
Description: Trace-preserving property of endomorphism sum operation 𝑃, based on theorem trlco 34836. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 34836) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopltp.l = (le‘𝐾)
tendopltp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopltp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑅(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   (𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2609 . 2 (Base‘𝐾) = (Base‘𝐾)
2 tendopltp.l . 2 = (le‘𝐾)
3 simp1l 1077 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ HL)
4 hllat 33471 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
6 simp1 1053 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 tendopl.h . . . 4 𝐻 = (LHyp‘𝐾)
8 tendopl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 tendopl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
10 tendopl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
117, 8, 9, 10tendoplcl2 34887 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)
12 tendopltp.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
131, 7, 8, 12trlcl 34272 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
146, 11, 13syl2anc 690 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ∈ (Base‘𝐾))
157, 8, 9tendocl 34876 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
16153adant2r 1312 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
171, 7, 8, 12trlcl 34272 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
186, 16, 17syl2anc 690 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾))
197, 8, 9tendocl 34876 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
20193adant2l 1311 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
211, 7, 8, 12trlcl 34272 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
226, 20, 21syl2anc 690 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾))
23 eqid 2609 . . . 4 (join‘𝐾) = (join‘𝐾)
241, 23latjcl 16820 . . 3 ((𝐾 ∈ Lat ∧ (𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾)) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
255, 18, 22, 24syl3anc 1317 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) ∈ (Base‘𝐾))
26 simp3 1055 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝐹𝑇)
271, 7, 8, 12trlcl 34272 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
286, 26, 27syl2anc 690 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
29 simp2l 1079 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑈𝐸)
30 simp2r 1080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → 𝑉𝐸)
3110, 8tendopl2 34886 . . . . 5 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3229, 30, 26, 31syl3anc 1317 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
3332fveq2d 6092 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) = (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))))
342, 23, 7, 8, 12trlco 34836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
356, 16, 20, 34syl3anc 1317 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝐹) ∘ (𝑉𝐹))) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
3633, 35eqbrtrd 4599 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))))
372, 7, 8, 12, 9tendotp 34870 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
38373adant2r 1312 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) (𝑅𝐹))
392, 7, 8, 12, 9tendotp 34870 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
40393adant2l 1311 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘(𝑉𝐹)) (𝑅𝐹))
411, 2, 23latjle12 16831 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐹)) ∈ (Base‘𝐾) ∧ (𝑅‘(𝑉𝐹)) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾))) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
425, 18, 22, 28, 41syl13anc 1319 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (((𝑅‘(𝑈𝐹)) (𝑅𝐹) ∧ (𝑅‘(𝑉𝐹)) (𝑅𝐹)) ↔ ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹)))
4338, 40, 42mpbi2and 957 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑅‘(𝑈𝐹))(join‘𝐾)(𝑅‘(𝑉𝐹))) (𝑅𝐹))
441, 2, 5, 14, 25, 28, 36, 43lattrd 16827 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cmpt 4637  ccom 5032  cfv 5790  (class class class)co 6527  cmpt2 6529  Basecbs 15641  lecple 15721  joincjn 16713  Latclat 16814  HLchlt 33458  LHypclh 34091  LTrncltrn 34208  trLctrl 34266  TEndoctendo 34861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33060
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-undef 7263  df-map 7723  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33284  df-ol 33286  df-oml 33287  df-covers 33374  df-ats 33375  df-atl 33406  df-cvlat 33430  df-hlat 33459  df-llines 33605  df-lplanes 33606  df-lvols 33607  df-lines 33608  df-psubsp 33610  df-pmap 33611  df-padd 33903  df-lhyp 34095  df-laut 34096  df-ldil 34211  df-ltrn 34212  df-trl 34267  df-tendo 34864
This theorem is referenced by:  tendoplcl  34890
  Copyright terms: Public domain W3C validator