Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospdi1 Structured version   Visualization version   GIF version

Theorem tendospdi1 36811
Description: Forward distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendospdi1 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))

Proof of Theorem tendospdi1
StepHypRef Expression
1 simpll 807 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐾𝑉)
2 simplr 809 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝑊𝐻)
3 simpr1 1234 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝑈𝐸)
4 simpr2 1236 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
5 simpr3 1238 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
6 tendosp.h . . 3 𝐻 = (LHyp‘𝐾)
7 tendosp.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendosp.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 7, 8tendovalco 36555 . 2 (((𝐾𝑉𝑊𝐻𝑈𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
101, 2, 3, 4, 5, 9syl32anc 1485 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  ccom 5270  cfv 6049  LHypclh 35773  LTrncltrn 35890  TEndoctendo 36542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-map 8025  df-tendo 36545
This theorem is referenced by:  tendocnv  36812  tendospcanN  36814  dvalveclem  36816  dvhlveclem  36899  dihjatcclem4  37212
  Copyright terms: Public domain W3C validator