![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendotp | Structured version Visualization version GIF version |
Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendoset.l | ⊢ ≤ = (le‘𝐾) |
tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendotp | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | istendo 36542 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
7 | fveq2 6344 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑆‘𝑓) = (𝑆‘𝐹)) | |
8 | 7 | fveq2d 6348 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑅‘(𝑆‘𝑓)) = (𝑅‘(𝑆‘𝐹))) |
9 | fveq2 6344 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑅‘𝑓) = (𝑅‘𝐹)) | |
10 | 8, 9 | breq12d 4809 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓) ↔ (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹))) |
11 | 10 | rspccv 3438 | . . . 4 ⊢ (∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓) → (𝐹 ∈ 𝑇 → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹))) |
12 | 11 | 3ad2ant3 1129 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) → (𝐹 ∈ 𝑇 → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹))) |
13 | 6, 12 | syl6bi 243 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → (𝐹 ∈ 𝑇 → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)))) |
14 | 13 | 3imp 1101 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∀wral 3042 class class class wbr 4796 ∘ ccom 5262 ⟶wf 6037 ‘cfv 6041 lecple 16142 LHypclh 35765 LTrncltrn 35882 trLctrl 35940 TEndoctendo 36534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-map 8017 df-tendo 36537 |
This theorem is referenced by: tendococl 36554 tendoid 36555 tendopltp 36562 tendoicl 36578 cdlemi1 36600 tendotr 36612 cdleml1N 36758 dva1dim 36767 dialss 36829 diblss 36953 |
Copyright terms: Public domain | W3C validator |