Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotr Structured version   Visualization version   GIF version

Theorem tendotr 34930
Description: The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
tendotr.b 𝐵 = (Base‘𝐾)
tendotr.h 𝐻 = (LHyp‘𝐾)
tendotr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendotr.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendotr.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendotr.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendotr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendotr
StepHypRef Expression
1 simpl1 1057 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2l 1107 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑈𝐸)
3 tendotr.b . . . . . 6 𝐵 = (Base‘𝐾)
4 tendotr.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 tendotr.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
63, 4, 5tendoid 34873 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
71, 2, 6syl2anc 691 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
8 simpr 476 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
98fveq2d 6092 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = (𝑈‘( I ↾ 𝐵)))
107, 9, 83eqtr4d 2654 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = 𝐹)
1110fveq2d 6092 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
12 simpl1 1057 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2l 1107 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝐸)
14 simpl3 1059 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
15 eqid 2610 . . . . 5 (le‘𝐾) = (le‘𝐾)
16 tendotr.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 tendotr.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1815, 4, 16, 17, 5tendotp 34861 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
1912, 13, 14, 18syl3anc 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
20 simpl1l 1105 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
21 hlatl 33459 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ AtLat)
234, 16, 5tendocl 34867 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
2412, 13, 14, 23syl3anc 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ∈ 𝑇)
25 simpl2r 1108 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝑂)
26 simpr 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
27 tendotr.o . . . . . . . . 9 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
283, 4, 16, 5, 27tendoid0 34925 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2912, 13, 14, 26, 28syl112anc 1322 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
3029necon3bid 2826 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
3125, 30mpbird 246 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ≠ ( I ↾ 𝐵))
32 eqid 2610 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
333, 32, 4, 16, 17trlnidat 34272 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑈𝐹) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
3412, 24, 31, 33syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
353, 32, 4, 16, 17trlnidat 34272 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3612, 14, 26, 35syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3715, 32atcmp 33410 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3822, 34, 36, 37syl3anc 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3919, 38mpbid 221 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
4011, 39pm2.61dane 2869 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4578  cmpt 4638   I cid 4938  cres 5030  cfv 5790  Basecbs 15644  lecple 15724  Atomscatm 33362  AtLatcal 33363  HLchlt 33449  LHypclh 34082  LTrncltrn 34199  trLctrl 34257  TEndoctendo 34852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-riotaBAD 33051
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-undef 7264  df-map 7724  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450  df-llines 33596  df-lplanes 33597  df-lvols 33598  df-lines 33599  df-psubsp 33601  df-pmap 33602  df-padd 33894  df-lhyp 34086  df-laut 34087  df-ldil 34202  df-ltrn 34203  df-trl 34258  df-tendo 34855
This theorem is referenced by:  cdleml6  35081
  Copyright terms: Public domain W3C validator