Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendovalco Structured version   Visualization version   GIF version

Theorem tendovalco 37895
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendovalco (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))

Proof of Theorem tendovalco
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 tendof.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 tendof.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2821 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5istendo 37890 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))))
7 coeq1 5722 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑔) = (𝐹𝑔))
87fveq2d 6668 . . . . . . . 8 (𝑓 = 𝐹 → (𝑆‘(𝑓𝑔)) = (𝑆‘(𝐹𝑔)))
9 fveq2 6664 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑆𝑓) = (𝑆𝐹))
109coeq1d 5726 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑆𝑓) ∘ (𝑆𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔)))
118, 10eqeq12d 2837 . . . . . . 7 (𝑓 = 𝐹 → ((𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ↔ (𝑆‘(𝐹𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔))))
12 coeq2 5723 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐹𝑔) = (𝐹𝐺))
1312fveq2d 6668 . . . . . . . 8 (𝑔 = 𝐺 → (𝑆‘(𝐹𝑔)) = (𝑆‘(𝐹𝐺)))
14 fveq2 6664 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑆𝑔) = (𝑆𝐺))
1514coeq2d 5727 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑆𝐹) ∘ (𝑆𝑔)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
1613, 15eqeq12d 2837 . . . . . . 7 (𝑔 = 𝐺 → ((𝑆‘(𝐹𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔)) ↔ (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
1711, 16rspc2v 3632 . . . . . 6 ((𝐹𝑇𝐺𝑇) → (∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
1817com12 32 . . . . 5 (∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
19183ad2ant2 1130 . . . 4 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
206, 19syl6bi 255 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))))
21203impia 1113 . 2 ((𝐾𝑉𝑊𝐻𝑆𝐸) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
2221imp 409 1 (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5058  ccom 5553  wf 6345  cfv 6349  lecple 16566  LHypclh 37114  LTrncltrn 37231  trLctrl 37288  TEndoctendo 37882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-tendo 37885
This theorem is referenced by:  tendoco2  37898  tendococl  37902  tendodi1  37914  tendoicl  37926  cdlemi2  37949  tendospdi1  38150
  Copyright terms: Public domain W3C validator