MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoeu1 Structured version   Visualization version   GIF version

Theorem termoeu1 17280
Description: Terminal objects are essentially unique (strong form), i.e. there is a unique isomorphism between two terminal objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
termoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem termoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termoeu1.b . . 3 (𝜑𝐵 ∈ (TermO‘𝐶))
2 eqid 2823 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2823 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 termoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4istermoi 17266 . . 3 ((𝜑𝐵 ∈ (TermO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
61, 5mpdan 685 . 2 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
7 termoeu1.a . . . . 5 (𝜑𝐴 ∈ (TermO‘𝐶))
82, 3, 4istermoi 17266 . . . . 5 ((𝜑𝐴 ∈ (TermO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
97, 8mpdan 685 . . . 4 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
10 oveq1 7165 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎(Hom ‘𝐶)𝐵) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2900 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2672 . . . . . . . 8 (𝑎 = 𝐴 → (∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3620 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2823 . . . . . . . . . . . . . 14 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprr 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 17048 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2662 . . . . . . . . . . . . . . 15 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq1 7165 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝑏(Hom ‘𝐶)𝐴) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2900 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝐵 → (𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2672 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐵 → (∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3623 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2662 . . . . . . . . . . . . . . . . 17 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 415 . . . . . . . . . . . . . . 15 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2823 . . . . . . . . . . . . . . . . . . . . 21 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 7, 12termoinv 17279 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
3534ad4ant134 1170 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
362, 30, 31, 32, 33, 14, 35inviso1 17038 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3736ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
3837eximdv 1918 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
3938expcom 416 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4039exlimiv 1931 . . . . . . . . . . . . . . . 16 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4140com3l 89 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241impd 413 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4321, 29, 42syl2and 609 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4443imp 409 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
45 simprl 769 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
46 euelss 4292 . . . . . . . . . . . 12 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4719, 44, 45, 46syl3anc 1367 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4847exp42 438 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
4948com24 95 . . . . . . . . 9 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5049com14 96 . . . . . . . 8 (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150expd 418 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5213, 51syldc 48 . . . . . 6 (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5352com15 101 . . . . 5 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5453impd 413 . . . 4 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
559, 54mpd 15 . . 3 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5655impd 413 . 2 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
576, 56mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  ∃!weu 2653  wral 3140  wss 3938   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  Hom chom 16578  Catccat 16937  Invcinv 17017  Isociso 17018  TermOctermo 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-cat 16941  df-cid 16942  df-sect 17019  df-inv 17020  df-iso 17021  df-termo 17254
This theorem is referenced by:  termoeu1w  17281
  Copyright terms: Public domain W3C validator