Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfi Structured version   Visualization version   GIF version

Theorem tfi 7050
 Description: The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring] p. 39. This principle states that if 𝐴 is a class of ordinal numbers with the property that every ordinal number included in 𝐴 also belongs to 𝐴, then every ordinal number is in 𝐴. See theorem tfindes 7059 or tfinds 7056 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
tfi ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tfi
StepHypRef Expression
1 eldifn 3731 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → ¬ 𝑥𝐴)
21adantl 482 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ 𝑥𝐴)
3 eldifi 3730 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 𝐴) → 𝑥 ∈ On)
4 onss 6987 . . . . . . . . . . . . 13 (𝑥 ∈ On → 𝑥 ⊆ On)
5 difin0ss 3944 . . . . . . . . . . . . 13 (((On ∖ 𝐴) ∩ 𝑥) = ∅ → (𝑥 ⊆ On → 𝑥𝐴))
64, 5syl5com 31 . . . . . . . . . . . 12 (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
76imim1d 82 . . . . . . . . . . 11 (𝑥 ∈ On → ((𝑥𝐴𝑥𝐴) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
87a2i 14 . . . . . . . . . 10 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
93, 8syl5 34 . . . . . . . . 9 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (On ∖ 𝐴) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
109imp 445 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
112, 10mtod 189 . . . . . . 7 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
1211ex 450 . . . . . 6 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (On ∖ 𝐴) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅))
1312ralimi2 2948 . . . . 5 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
14 ralnex 2991 . . . . 5 (∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅ ↔ ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
1513, 14sylib 208 . . . 4 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
16 ssdif0 3940 . . . . . 6 (On ⊆ 𝐴 ↔ (On ∖ 𝐴) = ∅)
1716necon3bbii 2840 . . . . 5 (¬ On ⊆ 𝐴 ↔ (On ∖ 𝐴) ≠ ∅)
18 ordon 6979 . . . . . 6 Ord On
19 difss 3735 . . . . . 6 (On ∖ 𝐴) ⊆ On
20 tz7.5 5742 . . . . . 6 ((Ord On ∧ (On ∖ 𝐴) ⊆ On ∧ (On ∖ 𝐴) ≠ ∅) → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2118, 19, 20mp3an12 1413 . . . . 5 ((On ∖ 𝐴) ≠ ∅ → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2217, 21sylbi 207 . . . 4 (¬ On ⊆ 𝐴 → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2315, 22nsyl2 142 . . 3 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → On ⊆ 𝐴)
2423anim2i 593 . 2 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → (𝐴 ⊆ On ∧ On ⊆ 𝐴))
25 eqss 3616 . 2 (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴))
2624, 25sylibr 224 1 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1482   ∈ wcel 1989   ≠ wne 2793  ∀wral 2911  ∃wrex 2912   ∖ cdif 3569   ∩ cin 3571   ⊆ wss 3572  ∅c0 3913  Ord word 5720  Oncon0 5721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-tr 4751  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-ord 5724  df-on 5725 This theorem is referenced by:  tfis  7051  tfisg  31700  onsetrec  42222
 Copyright terms: Public domain W3C validator