MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg Structured version   Visualization version   GIF version

Theorem tfindsg 7577
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal 𝐵 instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindsg.1 (𝑥 = 𝐵 → (𝜑𝜓))
tfindsg.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfindsg.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfindsg.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfindsg.5 (𝐵 ∈ On → 𝜓)
tfindsg.6 (((𝑦 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝑦) → (𝜒𝜃))
tfindsg.7 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
Assertion
Ref Expression
tfindsg (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsg
StepHypRef Expression
1 sseq2 3995 . . . . . . 7 (𝑥 = ∅ → (𝐵𝑥𝐵 ⊆ ∅))
21adantl 484 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝐵𝑥𝐵 ⊆ ∅))
3 eqeq2 2835 . . . . . . . 8 (𝐵 = ∅ → (𝑥 = 𝐵𝑥 = ∅))
4 tfindsg.1 . . . . . . . 8 (𝑥 = 𝐵 → (𝜑𝜓))
53, 4syl6bir 256 . . . . . . 7 (𝐵 = ∅ → (𝑥 = ∅ → (𝜑𝜓)))
65imp 409 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝜑𝜓))
72, 6imbi12d 347 . . . . 5 ((𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
81imbi1d 344 . . . . . 6 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜑)))
9 ss0 4354 . . . . . . . . 9 (𝐵 ⊆ ∅ → 𝐵 = ∅)
109con3i 157 . . . . . . . 8 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅)
1110pm2.21d 121 . . . . . . 7 𝐵 = ∅ → (𝐵 ⊆ ∅ → (𝜑𝜓)))
1211pm5.74d 275 . . . . . 6 𝐵 = ∅ → ((𝐵 ⊆ ∅ → 𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
138, 12sylan9bbr 513 . . . . 5 ((¬ 𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
147, 13pm2.61ian 810 . . . 4 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
1514imbi2d 343 . . 3 (𝑥 = ∅ → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵 ⊆ ∅ → 𝜓))))
16 sseq2 3995 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
17 tfindsg.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
1816, 17imbi12d 347 . . . 4 (𝑥 = 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵𝑦𝜒)))
1918imbi2d 343 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵𝑦𝜒))))
20 sseq2 3995 . . . . 5 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ⊆ suc 𝑦))
21 tfindsg.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
2220, 21imbi12d 347 . . . 4 (𝑥 = suc 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ suc 𝑦𝜃)))
2322imbi2d 343 . . 3 (𝑥 = suc 𝑦 → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵 ⊆ suc 𝑦𝜃))))
24 sseq2 3995 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
25 tfindsg.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
2624, 25imbi12d 347 . . . 4 (𝑥 = 𝐴 → ((𝐵𝑥𝜑) ↔ (𝐵𝐴𝜏)))
2726imbi2d 343 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵𝐴𝜏))))
28 tfindsg.5 . . . 4 (𝐵 ∈ On → 𝜓)
2928a1d 25 . . 3 (𝐵 ∈ On → (𝐵 ⊆ ∅ → 𝜓))
30 vex 3499 . . . . . . . . . . . . . 14 𝑦 ∈ V
3130sucex 7528 . . . . . . . . . . . . 13 suc 𝑦 ∈ V
3231eqvinc 3644 . . . . . . . . . . . 12 (suc 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵))
3328, 4syl5ibr 248 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐵 ∈ On → 𝜑))
3421biimpd 231 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝜑𝜃))
3533, 34sylan9r 511 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ On → 𝜃))
3635exlimiv 1931 . . . . . . . . . . . 12 (∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ On → 𝜃))
3732, 36sylbi 219 . . . . . . . . . . 11 (suc 𝑦 = 𝐵 → (𝐵 ∈ On → 𝜃))
3837eqcoms 2831 . . . . . . . . . 10 (𝐵 = suc 𝑦 → (𝐵 ∈ On → 𝜃))
3938imim2i 16 . . . . . . . . 9 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ On → 𝜃)))
4039a1d 25 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ On → 𝜃))))
4140com4r 94 . . . . . . 7 (𝐵 ∈ On → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
4241adantl 484 . . . . . 6 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
43 df-ne 3019 . . . . . . . . 9 (𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦)
4443anbi2i 624 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ (𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦))
45 annim 406 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
4644, 45bitri 277 . . . . . . 7 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
47 onsssuc 6280 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦𝐵 ∈ suc 𝑦))
48 suceloni 7530 . . . . . . . . . . 11 (𝑦 ∈ On → suc 𝑦 ∈ On)
49 onelpss 6233 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5048, 49sylan2 594 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5147, 50bitrd 281 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5251ancoms 461 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
53 tfindsg.6 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝑦) → (𝜒𝜃))
5453ex 415 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒𝜃)))
5554a1ddd 80 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒 → (𝐵 ⊆ suc 𝑦𝜃))))
5655a2d 29 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵𝑦𝜒) → (𝐵𝑦 → (𝐵 ⊆ suc 𝑦𝜃))))
5756com23 86 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
5852, 57sylbird 262 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
5946, 58syl5bir 245 . . . . . 6 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6042, 59pm2.61d 181 . . . . 5 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃)))
6160ex 415 . . . 4 (𝑦 ∈ On → (𝐵 ∈ On → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6261a2d 29 . . 3 (𝑦 ∈ On → ((𝐵 ∈ On → (𝐵𝑦𝜒)) → (𝐵 ∈ On → (𝐵 ⊆ suc 𝑦𝜃))))
63 pm2.27 42 . . . . . . . . 9 (𝐵 ∈ On → ((𝐵 ∈ On → (𝐵𝑦𝜒)) → (𝐵𝑦𝜒)))
6463ralimdv 3180 . . . . . . . 8 (𝐵 ∈ On → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → ∀𝑦𝑥 (𝐵𝑦𝜒)))
6564ad2antlr 725 . . . . . . 7 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → ∀𝑦𝑥 (𝐵𝑦𝜒)))
66 tfindsg.7 . . . . . . 7 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
6765, 66syld 47 . . . . . 6 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → 𝜑))
6867exp31 422 . . . . 5 (Lim 𝑥 → (𝐵 ∈ On → (𝐵𝑥 → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → 𝜑))))
6968com3l 89 . . . 4 (𝐵 ∈ On → (𝐵𝑥 → (Lim 𝑥 → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → 𝜑))))
7069com4t 93 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → (𝐵 ∈ On → (𝐵𝑥𝜑))))
7115, 19, 23, 27, 29, 62, 70tfinds 7576 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵𝐴𝜏)))
7271imp31 420 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293  Oncon0 6193  Lim wlim 6194  suc csuc 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199
This theorem is referenced by:  tfindsg2  7578  oaordi  8174  infensuc  8697  r1ordg  9209
  Copyright terms: Public domain W3C validator