MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis3 Structured version   Visualization version   GIF version

Theorem tfis3 7007
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis3.2 (𝑥 = 𝐴 → (𝜑𝜒))
tfis3.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis3 (𝐴 ∈ On → 𝜒)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
2 tfis3.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis3.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
42, 3tfis2 7006 . 2 (𝑥 ∈ On → 𝜑)
51, 4vtoclga 3258 1 (𝐴 ∈ On → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wral 2907  Oncon0 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-tr 4715  df-eprel 4987  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-ord 5687  df-on 5688
This theorem is referenced by:  tfisi  7008  tfinds  7009  tfrlem1  7420  ordtypelem7  8376  rankonidlem  8638  tcrank  8694  infxpenlem  8783  alephle  8858  dfac12lem3  8914  ttukeylem5  9282  ttukeylem6  9283  tskord  9549  grudomon  9586  aomclem6  37130
  Copyright terms: Public domain W3C validator