Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfisg Structured version   Visualization version   GIF version

Theorem tfisg 33057
Description: A closed form of tfis 7571. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥 ∈ On 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfisg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4058 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 dfss3 3958 . . . . . . . . 9 (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
3 nfcv 2979 . . . . . . . . . . . 12 𝑥On
43elrabsf 3818 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑))
54simprbi 499 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑)
65ralimi 3162 . . . . . . . . 9 (∀𝑦𝑧 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑧 [𝑦 / 𝑥]𝜑)
72, 6sylbi 219 . . . . . . . 8 (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑧 [𝑦 / 𝑥]𝜑)
8 nfcv 2979 . . . . . . . . . . . 12 𝑥𝑧
9 nfsbc1v 3794 . . . . . . . . . . . 12 𝑥[𝑦 / 𝑥]𝜑
108, 9nfralw 3227 . . . . . . . . . . 11 𝑥𝑦𝑧 [𝑦 / 𝑥]𝜑
11 nfsbc1v 3794 . . . . . . . . . . 11 𝑥[𝑧 / 𝑥]𝜑
1210, 11nfim 1897 . . . . . . . . . 10 𝑥(∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
13 raleq 3407 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 [𝑦 / 𝑥]𝜑))
14 sbceq1a 3785 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1513, 14imbi12d 347 . . . . . . . . . 10 (𝑥 = 𝑧 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ↔ (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
1612, 15rspc 3613 . . . . . . . . 9 (𝑧 ∈ On → (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
1716impcom 410 . . . . . . . 8 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑))
187, 17syl5 34 . . . . . . 7 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → [𝑧 / 𝑥]𝜑))
19 simpr 487 . . . . . . 7 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → 𝑧 ∈ On)
2018, 19jctild 528 . . . . . 6 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → (𝑧 ∈ On ∧ [𝑧 / 𝑥]𝜑)))
213elrabsf 3818 . . . . . 6 (𝑧 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑧 ∈ On ∧ [𝑧 / 𝑥]𝜑))
2220, 21syl6ibr 254 . . . . 5 ((∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ∧ 𝑧 ∈ On) → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
2322ralrimiva 3184 . . . 4 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
24 tfi 7570 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On)
251, 23, 24sylancr 589 . . 3 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → {𝑥 ∈ On ∣ 𝜑} = On)
2625eqcomd 2829 . 2 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → On = {𝑥 ∈ On ∣ 𝜑})
27 rabid2 3383 . 2 (On = {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑥 ∈ On 𝜑)
2826, 27sylib 220 1 (∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥 ∈ On 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  [wsbc 3774  wss 3938  Oncon0 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197
This theorem is referenced by:  soseq  33098
  Copyright terms: Public domain W3C validator