MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2b Structured version   Visualization version   GIF version

Theorem tfr2b 8035
Description: Without assuming ax-rep 5193, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2b (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))

Proof of Theorem tfr2b
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7506 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 eqid 2824 . . . . 5 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
32tfrlem15 8031 . . . 4 (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V))
4 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
54dmeqi 5776 . . . . 5 dom 𝐹 = dom recs(𝐺)
65eleq2i 2907 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom recs(𝐺))
74reseq1i 5852 . . . . 5 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87eleq1i 2906 . . . 4 ((𝐹𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V)
93, 6, 83bitr4g 316 . . 3 (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
10 onprc 7502 . . . . . 6 ¬ On ∈ V
11 elex 3515 . . . . . 6 (On ∈ dom 𝐹 → On ∈ V)
1210, 11mto 199 . . . . 5 ¬ On ∈ dom 𝐹
13 eleq1 2903 . . . . 5 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹))
1412, 13mtbiri 329 . . . 4 (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹)
152tfrlem13 8029 . . . . . 6 ¬ recs(𝐺) ∈ V
164, 15eqneltri 2909 . . . . 5 ¬ 𝐹 ∈ V
17 reseq2 5851 . . . . . . 7 (𝐴 = On → (𝐹𝐴) = (𝐹 ↾ On))
184tfr1a 8033 . . . . . . . . . 10 (Fun 𝐹 ∧ Lim dom 𝐹)
1918simpli 486 . . . . . . . . 9 Fun 𝐹
20 funrel 6375 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
2119, 20ax-mp 5 . . . . . . . 8 Rel 𝐹
2218simpri 488 . . . . . . . . 9 Lim dom 𝐹
23 limord 6253 . . . . . . . . 9 (Lim dom 𝐹 → Ord dom 𝐹)
24 ordsson 7507 . . . . . . . . 9 (Ord dom 𝐹 → dom 𝐹 ⊆ On)
2522, 23, 24mp2b 10 . . . . . . . 8 dom 𝐹 ⊆ On
26 relssres 5896 . . . . . . . 8 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2721, 25, 26mp2an 690 . . . . . . 7 (𝐹 ↾ On) = 𝐹
2817, 27syl6eq 2875 . . . . . 6 (𝐴 = On → (𝐹𝐴) = 𝐹)
2928eleq1d 2900 . . . . 5 (𝐴 = On → ((𝐹𝐴) ∈ V ↔ 𝐹 ∈ V))
3016, 29mtbiri 329 . . . 4 (𝐴 = On → ¬ (𝐹𝐴) ∈ V)
3114, 302falsed 379 . . 3 (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
329, 31jaoi 853 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
331, 32sylbi 219 1 (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  {cab 2802  wral 3141  wrex 3142  Vcvv 3497  wss 3939  dom cdm 5558  cres 5560  Rel wrel 5563  Ord word 6193  Oncon0 6194  Lim wlim 6195  Fun wfun 6352   Fn wfn 6353  cfv 6358  recscrecs 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-wrecs 7950  df-recs 8011
This theorem is referenced by:  ordtypelem3  8987  ordtypelem9  8993
  Copyright terms: Public domain W3C validator