MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr3 Structured version   Visualization version   GIF version

Theorem tfr3 8038
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47. Finally, we show that 𝐹 is unique. We do this by showing that any class 𝐵 with the same properties of 𝐹 that we showed in parts 1 and 2 is identical to 𝐹. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺

Proof of Theorem tfr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑥 𝐵 Fn On
2 nfra1 3222 . . . 4 𝑥𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))
31, 2nfan 1899 . . 3 𝑥(𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)))
4 nfv 1914 . . . . . 6 𝑥(𝐵𝑦) = (𝐹𝑦)
53, 4nfim 1896 . . . . 5 𝑥((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦))
6 fveq2 6673 . . . . . . 7 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
7 fveq2 6673 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
86, 7eqeq12d 2840 . . . . . 6 (𝑥 = 𝑦 → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐵𝑦) = (𝐹𝑦)))
98imbi2d 343 . . . . 5 (𝑥 = 𝑦 → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦))))
10 r19.21v 3178 . . . . . 6 (∀𝑦𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
11 rsp 3208 . . . . . . . . . 10 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))))
12 onss 7508 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → 𝑥 ⊆ On)
13 tfr.1 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = recs(𝐺)
1413tfr1 8036 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn On
15 fvreseq 6813 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 Fn On ∧ 𝐹 Fn On) ∧ 𝑥 ⊆ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
1614, 15mpanl2 699 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Fn On ∧ 𝑥 ⊆ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
17 fveq2 6673 . . . . . . . . . . . . . . . . . . . 20 ((𝐵𝑥) = (𝐹𝑥) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
1816, 17syl6bir 256 . . . . . . . . . . . . . . . . . . 19 ((𝐵 Fn On ∧ 𝑥 ⊆ On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
1912, 18sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝐵 Fn On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2019ancoms 461 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2120imp 409 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
2221adantr 483 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
2313tfr2 8037 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
2423jctr 527 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
25 jcab 520 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥)))) ↔ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
2624, 25sylibr 236 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
27 eqeq12 2838 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥))) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2826, 27syl6 35 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))))
2928imp 409 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
3029adantl 484 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
3122, 30mpbird 259 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → (𝐵𝑥) = (𝐹𝑥))
3231exp43 439 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵𝑥) = (𝐹𝑥)))))
3332com4t 93 . . . . . . . . . . . 12 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3433exp4a 434 . . . . . . . . . . 11 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥))))))
3534pm2.43d 53 . . . . . . . . . 10 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3611, 35syl 17 . . . . . . . . 9 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3736com3l 89 . . . . . . . 8 (𝑥 ∈ On → (𝐵 Fn On → (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3837impd 413 . . . . . . 7 (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥))))
3938a2d 29 . . . . . 6 (𝑥 ∈ On → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥))))
4010, 39syl5bi 244 . . . . 5 (𝑥 ∈ On → (∀𝑦𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥))))
415, 9, 40tfis2f 7573 . . . 4 (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥)))
4241com12 32 . . 3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵𝑥) = (𝐹𝑥)))
433, 42ralrimi 3219 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥))
44 eqfnfv 6805 . . . 4 ((𝐵 Fn On ∧ 𝐹 Fn On) → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)))
4514, 44mpan2 689 . . 3 (𝐵 Fn On → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)))
4645biimpar 480 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)) → 𝐵 = 𝐹)
4743, 46syldan 593 1 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wss 3939  cres 5560  Oncon0 6194   Fn wfn 6353  cfv 6358  recscrecs 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-wrecs 7950  df-recs 8011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator