MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem1 Structured version   Visualization version   GIF version

Theorem tfrlem1 8001
Description: A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlem1.1 (𝜑𝐴 ∈ On)
tfrlem1.2 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
tfrlem1.3 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
tfrlem1.4 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
tfrlem1.5 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
Assertion
Ref Expression
tfrlem1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlem1
Dummy variables 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3986 . 2 𝐴𝐴
2 tfrlem1.1 . . 3 (𝜑𝐴 ∈ On)
3 sseq1 3989 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
4 raleq 3403 . . . . . 6 (𝑦 = 𝑧 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
53, 4imbi12d 346 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
65imbi2d 342 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))))
7 sseq1 3989 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
8 raleq 3403 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
97, 8imbi12d 346 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
109imbi2d 342 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))))
11 r19.21v 3172 . . . . 5 (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
12 tfrlem1.2 . . . . . . . . . . . . . . . . 17 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312ad4antr 728 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1413simpld 495 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐹)
1514funfnd 6379 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐹 Fn dom 𝐹)
16 eloni 6194 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
1716ad3antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → Ord 𝑦)
18 ordelss 6200 . . . . . . . . . . . . . . . . 17 ((Ord 𝑦𝑤𝑦) → 𝑤𝑦)
1917, 18sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝑦)
20 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑦𝐴)
2119, 20sstrd 3974 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
2213simprd 496 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐹)
2321, 22sstrd 3974 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐹)
24 fnssres 6463 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹𝑤 ⊆ dom 𝐹) → (𝐹𝑤) Fn 𝑤)
2515, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) Fn 𝑤)
26 tfrlem1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
2726ad4antr 728 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐺𝐴 ⊆ dom 𝐺))
2827simpld 495 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐺)
2928funfnd 6379 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐺 Fn dom 𝐺)
3027simprd 496 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐺)
3121, 30sstrd 3974 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐺)
32 fnssres 6463 . . . . . . . . . . . . . 14 ((𝐺 Fn dom 𝐺𝑤 ⊆ dom 𝐺) → (𝐺𝑤) Fn 𝑤)
3329, 31, 32syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) Fn 𝑤)
34 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
35 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐺𝑥) = (𝐺𝑢))
3634, 35eqeq12d 2834 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑢) = (𝐺𝑢)))
3721adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝐴)
38 sseq1 3989 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
39 raleq 3403 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4038, 39imbi12d 346 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → ((𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
41 simp-4r 780 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
42 simplr 765 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝑦)
4340, 41, 42rspcdva 3622 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4437, 43mpd 15 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))
45 simpr 485 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑢𝑤)
4636, 44, 45rspcdva 3622 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝐹𝑢) = (𝐺𝑢))
47 fvres 6682 . . . . . . . . . . . . . . 15 (𝑢𝑤 → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
4847adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
49 fvres 6682 . . . . . . . . . . . . . . 15 (𝑢𝑤 → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5049adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5146, 48, 503eqtr4d 2863 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = ((𝐺𝑤)‘𝑢))
5225, 33, 51eqfnfvd 6797 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
5352fveq2d 6667 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐵‘(𝐹𝑤)) = (𝐵‘(𝐺𝑤)))
54 fveq2 6663 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
55 reseq2 5841 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
5655fveq2d 6667 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐵‘(𝐹𝑥)) = (𝐵‘(𝐹𝑤)))
5754, 56eqeq12d 2834 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐵‘(𝐹𝑥)) ↔ (𝐹𝑤) = (𝐵‘(𝐹𝑤))))
58 tfrlem1.4 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
5958ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
60 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦𝐴)
6160sselda 3964 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
6257, 59, 61rspcdva 3622 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐵‘(𝐹𝑤)))
63 fveq2 6663 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
64 reseq2 5841 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
6564fveq2d 6667 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐵‘(𝐺𝑥)) = (𝐵‘(𝐺𝑤)))
6663, 65eqeq12d 2834 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝐺𝑥) = (𝐵‘(𝐺𝑥)) ↔ (𝐺𝑤) = (𝐵‘(𝐺𝑤))))
67 tfrlem1.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
6867ad4antr 728 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
6966, 68, 61rspcdva 3622 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) = (𝐵‘(𝐺𝑤)))
7053, 62, 693eqtr4d 2863 . . . . . . . . . 10 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
7170ralrimiva 3179 . . . . . . . . 9 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7254, 63eqeq12d 2834 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑤) = (𝐺𝑤)))
7372cbvralvw 3447 . . . . . . . . 9 (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7471, 73sylibr 235 . . . . . . . 8 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))
7574exp31 420 . . . . . . 7 ((𝜑𝑦 ∈ On) → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
7675expcom 414 . . . . . 6 (𝑦 ∈ On → (𝜑 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
7776a2d 29 . . . . 5 (𝑦 ∈ On → ((𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
7811, 77syl5bi 243 . . . 4 (𝑦 ∈ On → (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
796, 10, 78tfis3 7561 . . 3 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
802, 79mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
811, 80mpi 20 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  wss 3933  dom cdm 5548  cres 5550  Ord word 6183  Oncon0 6184  Fun wfun 6342   Fn wfn 6343  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356
This theorem is referenced by:  tfrlem5  8005
  Copyright terms: Public domain W3C validator