MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem11 Structured version   Visualization version   GIF version

Theorem tfrlem11 8026
Description: Lemma for transfinite recursion. Compute the value of 𝐶. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem11 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem11
StepHypRef Expression
1 elsuci 6259 . 2 (𝐵 ∈ suc dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)))
2 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
3 tfrlem.3 . . . . . . . . 9 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
42, 3tfrlem10 8025 . . . . . . . 8 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
5 fnfun 6455 . . . . . . . 8 (𝐶 Fn suc dom recs(𝐹) → Fun 𝐶)
64, 5syl 17 . . . . . . 7 (dom recs(𝐹) ∈ On → Fun 𝐶)
7 ssun1 4150 . . . . . . . . 9 recs(𝐹) ⊆ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
87, 3sseqtrri 4006 . . . . . . . 8 recs(𝐹) ⊆ 𝐶
92tfrlem9 8023 . . . . . . . . 9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
10 funssfv 6693 . . . . . . . . . . . 12 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
11103expa 1114 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
1211adantrl 714 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
13 onelss 6235 . . . . . . . . . . . 12 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹)))
1413imp 409 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → 𝐵 ⊆ dom recs(𝐹))
15 fun2ssres 6401 . . . . . . . . . . . . 13 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
16153expa 1114 . . . . . . . . . . . 12 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
1716fveq2d 6676 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1814, 17sylan2 594 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1912, 18eqeq12d 2839 . . . . . . . . 9 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
209, 19syl5ibr 248 . . . . . . . 8 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
218, 20mpanl2 699 . . . . . . 7 ((Fun 𝐶 ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
226, 21sylan 582 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
2322exp32 423 . . . . 5 (dom recs(𝐹) ∈ On → (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))))
2423pm2.43i 52 . . . 4 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))))
2524pm2.43d 53 . . 3 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
26 opex 5358 . . . . . . . . 9 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ V
2726snid 4603 . . . . . . . 8 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨𝐵, (𝐹‘(𝐶𝐵))⟩}
28 opeq1 4805 . . . . . . . . . . 11 (𝐵 = dom recs(𝐹) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
2928adantl 484 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
30 eqimss 4025 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹))
318, 15mp3an2 1445 . . . . . . . . . . . . . 14 ((Fun 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
326, 30, 31syl2an 597 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
33 reseq2 5850 . . . . . . . . . . . . . . 15 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = (recs(𝐹) ↾ dom recs(𝐹)))
342tfrlem6 8020 . . . . . . . . . . . . . . . 16 Rel recs(𝐹)
35 resdm 5899 . . . . . . . . . . . . . . . 16 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
3733, 36syl6eq 2874 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3837adantl 484 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3932, 38eqtrd 2858 . . . . . . . . . . . 12 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = recs(𝐹))
4039fveq2d 6676 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘recs(𝐹)))
4140opeq2d 4812 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4229, 41eqtrd 2858 . . . . . . . . 9 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4342sneqd 4581 . . . . . . . 8 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → {⟨𝐵, (𝐹‘(𝐶𝐵))⟩} = {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4427, 43eleqtrid 2921 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
45 elun2 4155 . . . . . . 7 (⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4644, 45syl 17 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4746, 3eleqtrrdi 2926 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶)
48 simpr 487 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 = dom recs(𝐹))
49 sucidg 6271 . . . . . . . 8 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
5049adantr 483 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → dom recs(𝐹) ∈ suc dom recs(𝐹))
5148, 50eqeltrd 2915 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 ∈ suc dom recs(𝐹))
52 fnopfvb 6721 . . . . . 6 ((𝐶 Fn suc dom recs(𝐹) ∧ 𝐵 ∈ suc dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
534, 51, 52syl2an2r 683 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
5447, 53mpbird 259 . . . 4 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))
5554ex 415 . . 3 (dom recs(𝐹) ∈ On → (𝐵 = dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
5625, 55jaod 855 . 2 (dom recs(𝐹) ∈ On → ((𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
571, 56syl5 34 1 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  cun 3936  wss 3938  {csn 4569  cop 4575  dom cdm 5557  cres 5559  Rel wrel 5562  Oncon0 6193  suc csuc 6195  Fun wfun 6351   Fn wfn 6352  cfv 6357  recscrecs 8009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-wrecs 7949  df-recs 8010
This theorem is referenced by:  tfrlem12  8027
  Copyright terms: Public domain W3C validator