MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem12 Structured version   Visualization version   GIF version

Theorem tfrlem12 8019
Description: Lemma for transfinite recursion. Show 𝐶 is an acceptable function. (Contributed by NM, 15-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem12 (recs(𝐹) ∈ V → 𝐶𝐴)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 8014 . . . . 5 Ord dom recs(𝐹)
32a1i 11 . . . 4 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
4 dmexg 7607 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
5 elon2 6196 . . . 4 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
63, 4, 5sylanbrc 585 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
7 suceloni 7522 . . . 4 (dom recs(𝐹) ∈ On → suc dom recs(𝐹) ∈ On)
8 tfrlem.3 . . . . 5 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
91, 8tfrlem10 8017 . . . 4 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
101, 8tfrlem11 8018 . . . . . 6 (dom recs(𝐹) ∈ On → (𝑧 ∈ suc dom recs(𝐹) → (𝐶𝑧) = (𝐹‘(𝐶𝑧))))
1110ralrimiv 3181 . . . . 5 (dom recs(𝐹) ∈ On → ∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)))
12 fveq2 6664 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
13 reseq2 5842 . . . . . . . 8 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
1413fveq2d 6668 . . . . . . 7 (𝑧 = 𝑦 → (𝐹‘(𝐶𝑧)) = (𝐹‘(𝐶𝑦)))
1512, 14eqeq12d 2837 . . . . . 6 (𝑧 = 𝑦 → ((𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
1615cbvralvw 3449 . . . . 5 (∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
1711, 16sylib 220 . . . 4 (dom recs(𝐹) ∈ On → ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
18 fneq2 6439 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (𝐶 Fn 𝑥𝐶 Fn suc dom recs(𝐹)))
19 raleq 3405 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦))))
2018, 19anbi12d 632 . . . . 5 (𝑥 = suc dom recs(𝐹) → ((𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))) ↔ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
2120rspcev 3622 . . . 4 ((suc dom recs(𝐹) ∈ On ∧ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))) → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
227, 9, 17, 21syl12anc 834 . . 3 (dom recs(𝐹) ∈ On → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
236, 22syl 17 . 2 (recs(𝐹) ∈ V → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
24 snex 5323 . . . . 5 {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V
25 unexg 7466 . . . . 5 ((recs(𝐹) ∈ V ∧ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V) → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
2624, 25mpan2 689 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
278, 26eqeltrid 2917 . . 3 (recs(𝐹) ∈ V → 𝐶 ∈ V)
28 fneq1 6438 . . . . . 6 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
29 fveq1 6663 . . . . . . . 8 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
30 reseq1 5841 . . . . . . . . 9 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
3130fveq2d 6668 . . . . . . . 8 (𝑓 = 𝐶 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐶𝑦)))
3229, 31eqeq12d 2837 . . . . . . 7 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3332ralbidv 3197 . . . . . 6 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3428, 33anbi12d 632 . . . . 5 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3534rexbidv 3297 . . . 4 (𝑓 = 𝐶 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3635, 1elab2g 3667 . . 3 (𝐶 ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3727, 36syl 17 . 2 (recs(𝐹) ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3823, 37mpbird 259 1 (recs(𝐹) ∈ V → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  cun 3933  {csn 4560  cop 4566  dom cdm 5549  cres 5551  Ord word 6184  Oncon0 6185  suc csuc 6187   Fn wfn 6344  cfv 6349  recscrecs 8001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-wrecs 7941  df-recs 8002
This theorem is referenced by:  tfrlem13  8020
  Copyright terms: Public domain W3C validator