MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Structured version   Visualization version   GIF version

Theorem tfrlem16 7534
Description: Lemma for finite recursion. Without assuming ax-rep 4804, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem16 Lim dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem16
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 7525 . . 3 Ord dom recs(𝐹)
3 ordzsl 7087 . . 3 (Ord dom recs(𝐹) ↔ (dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹)))
42, 3mpbi 220 . 2 (dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹))
5 res0 5432 . . . . . . 7 (recs(𝐹) ↾ ∅) = ∅
6 0ex 4823 . . . . . . 7 ∅ ∈ V
75, 6eqeltri 2726 . . . . . 6 (recs(𝐹) ↾ ∅) ∈ V
8 0elon 5816 . . . . . . 7 ∅ ∈ On
91tfrlem15 7533 . . . . . . 7 (∅ ∈ On → (∅ ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ ∅) ∈ V))
108, 9ax-mp 5 . . . . . 6 (∅ ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ ∅) ∈ V)
117, 10mpbir 221 . . . . 5 ∅ ∈ dom recs(𝐹)
1211n0ii 3955 . . . 4 ¬ dom recs(𝐹) = ∅
1312pm2.21i 116 . . 3 (dom recs(𝐹) = ∅ → Lim dom recs(𝐹))
141tfrlem13 7531 . . . . 5 ¬ recs(𝐹) ∈ V
15 simpr 476 . . . . . . . . . 10 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → dom recs(𝐹) = suc 𝑧)
16 df-suc 5767 . . . . . . . . . 10 suc 𝑧 = (𝑧 ∪ {𝑧})
1715, 16syl6eq 2701 . . . . . . . . 9 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → dom recs(𝐹) = (𝑧 ∪ {𝑧}))
1817reseq2d 5428 . . . . . . . 8 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → (recs(𝐹) ↾ dom recs(𝐹)) = (recs(𝐹) ↾ (𝑧 ∪ {𝑧})))
191tfrlem6 7523 . . . . . . . . 9 Rel recs(𝐹)
20 resdm 5476 . . . . . . . . 9 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
2119, 20ax-mp 5 . . . . . . . 8 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
22 resundi 5445 . . . . . . . 8 (recs(𝐹) ↾ (𝑧 ∪ {𝑧})) = ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧}))
2318, 21, 223eqtr3g 2708 . . . . . . 7 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → recs(𝐹) = ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})))
24 vex 3234 . . . . . . . . . . 11 𝑧 ∈ V
2524sucid 5842 . . . . . . . . . 10 𝑧 ∈ suc 𝑧
2625, 15syl5eleqr 2737 . . . . . . . . 9 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → 𝑧 ∈ dom recs(𝐹))
271tfrlem9a 7527 . . . . . . . . 9 (𝑧 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝑧) ∈ V)
2826, 27syl 17 . . . . . . . 8 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → (recs(𝐹) ↾ 𝑧) ∈ V)
29 snex 4938 . . . . . . . . 9 {⟨𝑧, (recs(𝐹)‘𝑧)⟩} ∈ V
301tfrlem7 7524 . . . . . . . . . 10 Fun recs(𝐹)
31 funressn 6466 . . . . . . . . . 10 (Fun recs(𝐹) → (recs(𝐹) ↾ {𝑧}) ⊆ {⟨𝑧, (recs(𝐹)‘𝑧)⟩})
3230, 31ax-mp 5 . . . . . . . . 9 (recs(𝐹) ↾ {𝑧}) ⊆ {⟨𝑧, (recs(𝐹)‘𝑧)⟩}
3329, 32ssexi 4836 . . . . . . . 8 (recs(𝐹) ↾ {𝑧}) ∈ V
34 unexg 7001 . . . . . . . 8 (((recs(𝐹) ↾ 𝑧) ∈ V ∧ (recs(𝐹) ↾ {𝑧}) ∈ V) → ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})) ∈ V)
3528, 33, 34sylancl 695 . . . . . . 7 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})) ∈ V)
3623, 35eqeltrd 2730 . . . . . 6 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → recs(𝐹) ∈ V)
3736rexlimiva 3057 . . . . 5 (∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 → recs(𝐹) ∈ V)
3814, 37mto 188 . . . 4 ¬ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧
3938pm2.21i 116 . . 3 (∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 → Lim dom recs(𝐹))
40 id 22 . . 3 (Lim dom recs(𝐹) → Lim dom recs(𝐹))
4113, 39, 403jaoi 1431 . 2 ((dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹)) → Lim dom recs(𝐹))
424, 41ax-mp 5 1 Lim dom recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3o 1053   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  Vcvv 3231  cun 3605  wss 3607  c0 3948  {csn 4210  cop 4216  dom cdm 5143  cres 5145  Rel wrel 5148  Ord word 5760  Oncon0 5761  Lim wlim 5762  suc csuc 5763  Fun wfun 5920   Fn wfn 5921  cfv 5926  recscrecs 7512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-wrecs 7452  df-recs 7513
This theorem is referenced by:  tfr1a  7535
  Copyright terms: Public domain W3C validator