MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem8 Structured version   Visualization version   GIF version

Theorem tfrlem8 8014
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem8 Ord dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem8
Dummy variables 𝑔 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem3 8008 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
32abeq2i 2948 . . . . . . 7 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
4 fndm 6450 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
54adantr 483 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 = 𝑧)
65eleq1d 2897 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On))
76biimprcd 252 . . . . . . . 8 (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On))
87rexlimiv 3280 . . . . . . 7 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On)
93, 8sylbi 219 . . . . . 6 (𝑔𝐴 → dom 𝑔 ∈ On)
10 eleq1a 2908 . . . . . 6 (dom 𝑔 ∈ On → (𝑧 = dom 𝑔𝑧 ∈ On))
119, 10syl 17 . . . . 5 (𝑔𝐴 → (𝑧 = dom 𝑔𝑧 ∈ On))
1211rexlimiv 3280 . . . 4 (∃𝑔𝐴 𝑧 = dom 𝑔𝑧 ∈ On)
1312abssi 4046 . . 3 {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On
14 ssorduni 7494 . . 3 ({𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On → Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
1513, 14ax-mp 5 . 2 Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
161recsfval 8011 . . . . 5 recs(𝐹) = 𝐴
1716dmeqi 5768 . . . 4 dom recs(𝐹) = dom 𝐴
18 dmuni 5778 . . . 4 dom 𝐴 = 𝑔𝐴 dom 𝑔
19 vex 3498 . . . . . 6 𝑔 ∈ V
2019dmex 7610 . . . . 5 dom 𝑔 ∈ V
2120dfiun2 4951 . . . 4 𝑔𝐴 dom 𝑔 = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
2217, 18, 213eqtri 2848 . . 3 dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
23 ordeq 6193 . . 3 (dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}))
2422, 23ax-mp 5 . 2 (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
2515, 24mpbir 233 1 Ord dom recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  wss 3936   cuni 4832   ciun 4912  dom cdm 5550  cres 5552  Ord word 6185  Oncon0 6186   Fn wfn 6345  cfv 6350  recscrecs 8001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-tr 5166  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-iota 6309  df-fun 6352  df-fn 6353  df-fv 6358  df-wrecs 7941  df-recs 8002
This theorem is referenced by:  tfrlem10  8017  tfrlem12  8019  tfrlem13  8020  tfrlem14  8021  tfrlem15  8022  tfrlem16  8023
  Copyright terms: Public domain W3C validator