![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem8 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem8 | ⊢ Ord dom recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 7519 | . . . . . . . 8 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
3 | 2 | abeq2i 2764 | . . . . . . 7 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
4 | fndm 6028 | . . . . . . . . . . 11 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 = 𝑧) |
6 | 5 | eleq1d 2715 | . . . . . . . . 9 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On)) |
7 | 6 | biimprcd 240 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On)) |
8 | 7 | rexlimiv 3056 | . . . . . . 7 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On) |
9 | 3, 8 | sylbi 207 | . . . . . 6 ⊢ (𝑔 ∈ 𝐴 → dom 𝑔 ∈ On) |
10 | eleq1a 2725 | . . . . . 6 ⊢ (dom 𝑔 ∈ On → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑔 ∈ 𝐴 → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
12 | 11 | rexlimiv 3056 | . . . 4 ⊢ (∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On) |
13 | 12 | abssi 3710 | . . 3 ⊢ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On |
14 | ssorduni 7027 | . . 3 ⊢ ({𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On → Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
16 | 1 | recsfval 7522 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
17 | 16 | dmeqi 5357 | . . . 4 ⊢ dom recs(𝐹) = dom ∪ 𝐴 |
18 | dmuni 5366 | . . . 4 ⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 | |
19 | vex 3234 | . . . . . 6 ⊢ 𝑔 ∈ V | |
20 | 19 | dmex 7141 | . . . . 5 ⊢ dom 𝑔 ∈ V |
21 | 20 | dfiun2 4586 | . . . 4 ⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
22 | 17, 18, 21 | 3eqtri 2677 | . . 3 ⊢ dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
23 | ordeq 5768 | . . 3 ⊢ (dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔})) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) |
25 | 15, 24 | mpbir 221 | 1 ⊢ Ord dom recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 ∪ cuni 4468 ∪ ciun 4552 dom cdm 5143 ↾ cres 5145 Ord word 5760 Oncon0 5761 Fn wfn 5921 ‘cfv 5926 recscrecs 7512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-wrecs 7452 df-recs 7513 |
This theorem is referenced by: tfrlem10 7528 tfrlem12 7530 tfrlem13 7531 tfrlem14 7532 tfrlem15 7533 tfrlem16 7534 |
Copyright terms: Public domain | W3C validator |